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To guarantee the continuous coverage of the rechargeable sensors, Wireless Rechargeable 
Sensor Networks (WRSNs) has emerged with the advantages of high charging efficiency 
and reliable charging timeliness. Charging planning is an important problem in theoretical 
research and practical applications, and it faces more difficulties and challenges for 
multiple mobile chargers. In this paper, we introduce a charging planning problem for 
multiple chargers, namely Charging Energy Efficiency Maximization problem for Multi-
Chargers in WRSNs (CEEM-MC Problem), and prove its NP-hardness. The problem aims 
to maximize the charging energy efficiency of the charging process by assigning the 
charging amount and planning the charging path. To balance the charging consumption 
among multiple chargers, we propose two algorithms which are different on the charging 
path planning, Ring-Wandering Algorithm and Eight-Wandering Algorithm. To evaluate the 
performance on energy efficiency, we perform a series of simulations and the results verify 
the effectiveness of the proposed algorithms.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

High quality of service and continuous coverage are the most important requirements in the most applications of Wire-
less Sensor Networks (WSNs) [1], which brings the energy efficiency problems to the battery-powered sensors in virtual 
backbone construction [2,3] and routing protocols design [4]. Therefore Wireless Rechargeable Sensor Networks (WRSNs) 
have emerged with the advantages of high charging efficiency via static charging stations or mobile charging vehicles, 
which cannot only guarantee the timeliness of charging but also avoid the reduction of data reliability or low efficiency of 
energy transformation.

For cooperative coverage in WRSNs, the charging scheduling design should take the working pattern of the chargers and 
the energy consumption mode of the sensors into account. And the research on the charging scheduling can be divided 
into two cases, single-charger and multiple-charger as shown in Fig. 1. For the small-scale monitoring tasks in WRSNs, 
single-charger charging scheduling has the advantages of low cost and high planning efficiency. For the large-scale coverage 
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Fig. 1. An instance of Charging Planning.

missions in WRSNs, multiple-charger charging scheduling can avoid the fast charging consumption in single-charger case, 
and perform parallel charging to reduce the latency of charging and improve the scalability.

The working of the chargers in WRSNs depends on the moving mode and the charging pattern. For the moving mode, 
there are mainly two kinds, periodical charging and demand-driven charging. The former can avoid frequent checking the 
sensors’ remaining energy or predicting the consuming trend of the sensors’ energy. For the charging pattern, it can be 
classified into two types, single-charger-to-single-sensor charging and single-charger-to-multiple-sensor charging. It seems 
that the latter one can save more moving consumption than the former one. But the former one is beneficial for the 
dense-distributed or low-power-consumed WSNs. Thus we consider the chargers’ working pattern of demand-driven and 
single-charger-to-single-sensor charging.

In this paper, we focus on designing the charging planning strategy with multiple chargers in the WRSN, which mainly 
depends on the charging pattern, charging order arrangement and charging amount assignment. This paper studies the 
charging planning problem of multiple mobile chargers from the perspectives of charging amount assignment and charging 
path planning, which is to maximize the charging efficiency of the charger for guaranteeing the continuously works of the 
WRSN. The contributions of this paper are shown as below.

(1) We propose multiple-charger charging planning problem for WRSNs, called Charging Energy Efficiency Maximization 
problem for Multi-Chargers in WRSNs (CEEM-MC Problem) based on the energy consumption model. The goal of the prob-
lem is to maximize the charging energy efficiency of the charging process. The mathematical model and NP-hardness proof 
of problem are both given.

(2) To solve CEEM-MC problem, we propose two algorithms, Ring-Wandering Algorithm and Eight-Wandering Algorithm, 
which are both composed of Charging Region Division, Charging Energy Assignment and Charging Path Planning. The dif-
ferences between the two algorithms are region dividing and path planning. And we analyze the time complexities of the 
algorithms.

(3) The extensive simulations are performed to verify the effectiveness of the proposed algorithms for CEEM-MC problem.
The remainder of this paper is organized as follows. Section 2 introduces related works. In Section 3, we introduce the 

network model, energy consumption model and problem formulation. In Section 4, we propose two algorithms for solving 
the CEEM-MC Problem. Simulations are shown in Section 5. Section 6 concludes this paper.

2. Related works

In this section, we briefly review the literature related to the charging planning problems of WRSNs for sensors coverage. 
Based on the charging patterns of mobile chargers, the existing works on charging planning can be classified into two kinds: 
demand-driven charging strategies and periodic charging ones.

Demand-Driven Charging Strategies
For the demand-driven charging strategies, [5] proposed a path planning algorithm to choose the sensors in low-power 

status and satisfy their charging requirement based on a threshold value β on the remaining energy. The authors in [6]
predicted the energy consumption of sensors and transformed the charging cost as a monotone submodular function, then 
introduced a (1− 1

e )

4 -ratio algorithm for the problem. The authors in [7] proposed a spatial-and-temporal optimization algo-
rithm for real-time charging for eliminating the exhausted sensors and adding the powered new ones. The studies in [8,9]
aimed at designing the algorithm of path planning and charging assignment to maximize the network lifetime and minimize 
the charging consumption.

Periodic Charging Strategies
For periodic charging strategies, the authors in [10] designed a constant-ratio approximation algorithm for charging 

path planning problem under the powering limitation model. And the authors in [11] applied the region-separation and 
charging-discretion into the charing solution and proposed a 1−ξ

4(1−1/e) -ratio algorithm. The authors in [12] considered the 
one-to-many charging model and designed a constant-ratio algorithm. Recently, the new charging technology has drawn 
attentions of researchers like the (1−ξ)(1−e) -ratio algorithm based on the energy transferring depending on the obstacles 
e
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Table 1
Notations and illustrations.

Node Notations Illustrations

S Set of rechargeable sensors
si , (x[si ], y[si ]) Static sensor and its position
n Number of rechargeable sensors

Sensors E0
i The maximum battery capacity of sensor si

Er
i Remaining energy of sensor si in the coverage task

Elow Minimum energy level for the coverage task

C Set of mobile chargers
c j , (x[c j ], y[c j ]) Mobile charger and its starting station

Chargers m Number of mobile chargers
Emax The initial energy for all the chargers
α, β Parameters for energy consumption

in [13], the (3 + ξ)-ratio algorithm for multiple-chargers in one-vehicle model in [14] and the periodic charging algorithm 
with the optimal movement speed in [15].

In this paper, we consider the demand-driven charging planning for WRSNs and focus on the optimization goal of max-
imizing the energy efficiency of the chargers in the whole charging process, which has not been considered in the existing 
literature mentioned above. In [16], we proposed the charging scheduling problem with single mobile charger, Charg-
ing Scheduling problem with Maximized Energy Efficiency in WRSNs (CS-MEE Problem), and designed a heterogeneous-
weighted-graph algorithm, CS-HWG Algorithm, which is composed of Charging Energy Assignment and Charging Path 
Planning. In this paper, we continue to study the charging scheduling problem with multiple mobile chargers and pro-
pose the charging planning algorithms for the chargers to realize maximizing charging energy efficiency.

3. System model and problem formulation

3.1. Network model

The WRSN considered in the paper is a network composed of n stationary rechargeable sensors deployed on a two-
dimensional plane, which is denoted as a set S = {s1, s2, ..., sn}. For each sensor si , its position and its maximum battery 
capacity are denoted as (x[si], y[si]) and E0

i . It is assumed that the coverage scheduling for the sensors has been determined 
and doesn’t change for a certain period of time T , which decides the remaining battery energy of sensor si , Er

i . For the 
charging requirements for sensors, there are two kinds of status: (1) Working Status. Elow < Er

i ≤ E0
i . The sensors in this 

status can maintain the coverage working and have low demand on charging; (2) Charging Status. 0 < Er
i ≤ Elow . It is very 

necessary to charge the sensors in charging status and bring them back to working status. Elow is decided by the determined 
coverage scheduling and the sensor’s battery limitation, which can be both reviewed as the predefined values in advance.

For the sensors in coverage task, there are m mobile chargers in charge of charging the sensor nodes according to their 
needs, which is denoted as set C = {c1, c2, ..., cm}. For each charger c j , it begins its charging task from its service station 
(x[c j], y[c j]) and ends the task back to the same station. For all the chargers, their initial energies are unified as Emax . 
We assume that Emax satisfies two cases: one case is that Emax can guarantee all the sensors’ charging requirement for 
continuing the coverage task; the other one is that the charging amount of all the chargers in charging task cannot be less 
than θ · Emax , where θ is a parameter closed to 1.

In this paper, we consider the demand-driven charging mode. The sensors with lower remaining energy will be given 
high priorities for charging for the reason that they have high probabilities on causing exhaustion and monitoring failure. 
Thus the charging task firstly guarantees the impletion of the sensors in Charging Status, then meets the other sensors’ 
charging requirements. We conclude the related notations in Table 1.

3.2. Energy consumption model

The cooperative coverage considered here has the determined coverage scheduling in advance, which adopts the periodic 
charging, e.g. charging at intervals of duration T according to the covering energy consumption. In the charging process, the 
mobile chargers preferentially charge the static sensor in Charging Status and the energy consumption of chargers includes 
two aspects:

(1) Energy Consumption of Charging. At the beginning of a determined coverage strategy, each sensor si has an initial 
energy E0

i which is the maximum battery capacity. In the charging task, si ’s energy has consumed partially and the remain-
ing energy of si is Er

i . Here we denote the charging energy of charger c j for sensor si as C(c j, si) in the scheduling scheme. 
Furthermore, we consider the inevitable energy loss in the process of charging and the energy consumption of charging 
is α time of the required amount, i.e. Echarging

j,i = α · C(c j, si) · g j,i , where g j,i is a binary variable to denote whether c j is 
scheduled to charge sensor si , which is defined as follows:
195



Y. Hong, C. Luo, D. Li et al. Theoretical Computer Science 922 (2022) 193–205
g j,i =
{

1, if c j has been scheduled to charge sensor si,

0, otherwise.
(1)

(2) Energy Consumption of Moving. The charging model adopted in our paper is single-charger-to-single-sensor charging, 
i.e., the mobile charger is needed to reach the position of the sensor for the successful charging. In this model, the moving 
distance of the charger is the Euclidean distance from the current location of the charger to the position of the static 
sensor, which is denoted as dist(c j, si). If the energy consumption rate can be denoted as β , thus the energy consumption 
of moving is Emoving

j,i = β · dist(c j, si) · g j,i .
Based on the energy consumption of chargers on charging and moving, we define the energy efficiency of the charging 

process as shown in Definition 1.

Definition 1 (Charging Energy Efficiency). In a charging process for a determined coverage strategy, the charging energy 
efficiency is the proportion of the energy consumption on charging in the overall energy cost, which is denoted as EneE f f =∑

c j∈C,si∈S Echarging
j,i∑

c j∈C,si∈S (Echarging
j,i +Emoving

j,i )
.

3.3. Problem formulation

In this paper, we focus on the problem of maximizing the charging energy efficiency for WRSNs with multiply mobile 
chargers. To solve this problem, we need to design a charging scheduling strategy including charging path planning PathSet
and charging energy assignment EnergySet. PathSet is the set of scheduled paths of the chargers {path j |1 ≤ j ≤ m} (where 
path j is c j ’s charging path composed of the positions of the charged sensors by c j) and EnergySet is the charging energy 
assignment for each pair of charger-and-sensor {Echarging

j,i |1 ≤ j ≤ m, 1 ≤ i ≤ n}. Based on the above preliminaries, we refer 
to the problem as the Charging Energy Efficiency Maximization problem for Multi-Chargers in WRSNs (CEEM-MC Problem) 
as shown in Definition 2.

Definition 2 (CEEM-MC Problem). Given a set S = {s1, s2, · · · , sn} of n rechargeable sensors with their own battery capacity 
E0

i and the current remaining energy Er
i , a set C = {c1, c2, ..., cm} of m mobile chargers with the uniform energy capacity 

Emax , the Charging Energy Efficiency Maximization problem for Multi-Chargers in WRSNs (CEEM-MC Problem) is to find a 
charging scheduling strategy (PathSet, EnergySet) such that

(1) for each sensor si ∈ S , the scheduled charging energy should bring si from Charging Status to Working Status or keep 
si in Working Status, but cannot beyond its battery capacity E0

i ;
(2) for each sensor, there is a charging priority according to its status:

priority(Working Status)<priority(Charging Status). The specific value of each sensor’s charging priority will be given in 
the scheduling;

(3) for each charger c j ∈ C , the charging path begins and ends at c j ’s service station (x[c j], y[c j]) and the overall charging 
energy cannot less than θ · Emax or exceed its initial energy Emax, where θ is a parameter closed to 1. θ · Emax is the lower 
bound of the overall charging energy, which can avoid the case that only one charger will be scheduled to work leading to 
a high energy efficiency but a low charging quality;

(4) the charging energy efficiency of the charging process in the duration T ,

EneE f f =
∑

c j∈C,si∈S Echarging
j,i∑

c j∈C,si∈S (Echarging
j,i +Emoving

j,i )
, is maximized.

To elaborate the problem in detail, we also introduce the mathematical formulation of CEEM-MC Problem and give the 
NP-hardness proof of the problem in Theorem 1.

Maximize

∑
c j∈C,si∈S

(
α · C(c j, si) · g j,i

)
∑

c j∈C,si∈S

(
α · C(c j, si) · g j,i + β · dist(c j, si) · g j,i

) (2)

s.t.

Er
i +

∑
c j∈C

(
α · C(c j, si) · g j,i

) ≤ E0
i i = 1,2, · · · ,n (3)

∑
1≤ j≤m

g j,i ≤ 1 i = 1,2, · · · ,n (4)

θ · Emax ≤
∑(

α · C(c j, si) · g j,i
) ≤ Emax j = 1,2, · · · ,m (5)
si∈S
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g j,i ∈ {0,1} i = 0,1, · · · ,n

j = 0,1, · · · ,m (6)

The optimization objective is to maximize the charging energy efficiency as shown in (2). Constraint (3) expresses that 
the remaining energy and the charged energy amount of each sensor cannot beyond the sensor’s battery capacity. Constraint 
(4) states that each sensor should be charged by at most one charger according to the sensor’s status. Constraint (5) is the 
charging energy consumption constraint which guarantees the charging requirement of the sensors in Charging Status and 
ensures that the charging energy amount of the charger will not exceed the initial energy of the charger. Constraint (6)
defines the domain of the variable g j,i . In the mathematical formulation, we can find that there are mainly two variables 
C(c j, si) and g j,i whose value ranges are non-integer and integer respectively. Thus the existing solutions for integer linear 
programming problems cannot be applied directly in our problem.

Theorem 1. CEEM-MC Problem is NP-hard.

Proof. To prove the NP-hardness of CEEM-MC Problem, we consider a special case of it: there is only one charger (m = 1, 
C = {c1}) and all the sensors are in Charging Status. In this case, the charging energy for sensor si , C(c1, si), is the maximum 
amount E0

i − Er
i (shortly denoted by C(si)), which is decided by the expected Er

i from the coverage scheduling. And charger 
c1 will charge all the sensors, i.e., g1,i = 1 for 1 ≤ i ≤ n. Since there is only one charger, θ = 1 represents that the only one 
charger is bound to charger the sensors and it is out of consideration for the case that there is no consumption for the only 
charger.

Thus the objective of the problem is driven to maximizing 
∑

si∈S

(
α·C(si)

)
∑

si∈S

(
α·C(si)+β·dist(c1,si)

) . Based on equivalent conversion, the 

objective can be rewritten into maximizing 1
1+ β

α·C(si )

∑
si∈S dist(c1,si)

. Note that α, β and C(si) are predefined or can be calcu-

lated. By denoting β
α·C(si)

as a constant ctemp the objective becomes from maximizing 1
1+ctemp·∑si∈S dist(c1,si)

to minimizing ∑
si∈S dist(c1, si). Thus the problem in this special case can be represented to the following formulation:
Given a set S = {s1, s2, · · · , sn} of n rechargeable sensors with their charging requirement C(si), one mobile charger c1

with the sufficient energy capacity, the problem is to plan the charging path such that
(1) for each sensor si ∈ S , the scheduled charging energy should maintain si in Working Status, but cannot beyond its 

battery capacity E0
i ;

(2) for the charger c1, the charging path begins and ends at the service station (x[c1], y[c1]) and the overall charging 
energy cannot exceed its initial energy Emax;

(3) the length of charging path of c1, 
∑

si∈S dist(c1, si), is minimized.
It can be easily found that the above problem can be reduced to the Travelling Salesman Problem (TSP). To conclude, 

when the original problem is considered in the special case m = 1 and g1,i = 1 for 1 ≤ i ≤ n, CEEM-MC problem can be 
reduced to TSP, which has been proved NP-hard [17]. Since a special case of CEEM-MC problem is NP-hard, CEEM-MC 
problem is also NP-hard, which completes the proof. �
4. Algorithms for CEEM-MC Problem

When designing a charging scheduling strategy for WRSNs, several critical factors should be considered which directly 
determine the charging sequence and the charging amount allocation. The first one is the remaining energy of the recharge-
able sensors, which guarantees the continuous coverage of the network. The second factor is the moving distance of the 
chargers, which influences the total energy consumption. The last important factor is the initial energy and the charging 
consumption of the chargers, which can insure to finish the charging task. In this section, we propose two algorithms to 
solve the CEEM-MC Problem, Ring-Wandering Algorithm and Eight-Wandering Algorithm, based on the CS-HWG Algorithm 
in [16] for our charging scheduling problem in the case of m = 1.

4.1. Ring-Wandering Algorithm for CEEM-MC Problem

For the large-scale WRSNs, it is necessary to arrange multiple chargers for satisfying the charging requirement of the 
sensors in coverage task. Since the sensors’ energy residual values in the coverage task are different, it is considered to 
divide the charging range (e.g. the subset of sensor set S) of responsibility for each charger. Furthermore, considering the 
initial energy amount of each charger is the unity value Emax , controlling the energy consumption gap between each pair 
of chargers should be considered in charging scheduling. The energy consumption of the charger including the charging 
consumption and the moving part, and we focus on the moving consumption to control the gap under the assumption that 
each charger cost Emax or near Emax in the charging task. To this end, the first phase of the proposed algorithm is Charging 
Region Division. After clarifying each charger’s responsibility, we adopt the CS-HWG Algorithm in [16], which is composed 
of two phases Charging Energy Assignment and Charging Path Planning, for designing the charging scheduling scheme of 
each charger.
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Phase 1: Charging Region Division for Ring-track
Phase 1.1: Heterogeneous-weighted Graph Construction
To solve the CEEM-MC Problem, we firstly model the network with sensors and chargers into an auxiliary graph. In 

most related works on constructing the auxiliary graph, the auxiliary graph is either a node-weighted graph or an edge-
weighted graph. But in our solution, we construct a particular auxiliary graph with node-weights (depending on the charging 
cost) and edge-weights (decided by the moving cost), i.e., construct a heterogeneous-weighted graph as shown in Lines 
2-8 of Algorithm 1. The node set is composed of the positions of sensors and chargers, V = S

⋃
C . For the edge set, 

we consider the sensor deployment density: for spares graphs, we introduce a limitation value l0 of the moving distance 
between twice of charging, which can avoid excess consumption of the chargers’ energy for some single charging. Thus 
E = {(vi, v j)|∀vi, v j ∈ V and dist(vi, v j) ≤ l0}; for dense graphs, l0 can be regarded as infinity.

The weight assignment is with the consideration of the charging cost and the moving cost: Considering the charging 
cost, it is decided by each sensor’s maximum charging requirement. Thus the node weight is denoted as weight(si) =
α · (E0

i − Er
i ) for sensors and weight(c j) = 0 for chargers. Thus the node weight set V W = {weight(vi)|∀vi ∈ V }. Considering 

the moving cost, it is determined by the Euclidean distances between the pairs of nodes in the network, i.e., the edge 
weight is calculated by weight(vi, v j) = β · dist(vi, v j). And the edge weight set EW = {weight(vi, v j)|∀(vi, v j) ∈ E}. Then 
we complete the construction of the heterogeneous-weighted graph G = (V , E, V W , EW ).

Phase 1.2: Charging Clustering for Ring-track
Before the charging amount assignment and the charging path planning, the charging region division should be realized 

first as shown in Lines 9-17 of Algorithm 1. The region division is mainly decided by the Euclidean distances between each 
pair of the nodes in G , thus we focus on the edge-weighted graph G = (V , E, EW ) to divide regions. Here we adopt the 
K-Means Algorithm based on Minimum Spanning Tree to partition set V into m subsets, which will be charged by the m
chargers respectively. The detailed process is as follows:

(i) We construct the Minimum Spanning Tree (MST) T for the edge-weighted graph G = (V , E, EW ) via the Kruskal 
Algorithm [18].

(ii) We sort the edges on T in the increasing sort on the edge weight {(v1, v2), (v2, v3), ..., (v |V |−1, v |V |)} and elim-
inate the first m − 1 edges in the sort, i.e., delete {(v1, v2), (v2, v3), ..., (vm−1, vm)}. Then the MST T is divided into m
disconnected subgraph {T1, T2, ..., Tm}.

(iii) For each connected subgraph T j (1 ≤ j ≤ m), the average edge weight will be calculated for finding the initial 
clustering center and finally we perform the K-Means Algorithm [19] from the m initial clustering centers and obtain m
divided clusters T ′

j (1 ≤ j ≤ m).
Phase 2: Charging Energy Assignment
Phase 2.1: Charging Prioritization
Since the sensors with the higher charging requirements have larger priorities, we give a baseline value according to the 

divergence indicator among the sensors’ battery capacities, i.e., D I = �max1≤i, j≤n
E0

i

E0
j
�. We assign the priorities for the two 

kinds of sensors’ status respectively: (1) For the sensors in Charging Status, its priority pri(si) = D I2. These sensors’ charging 
requirement is greatest and the maximum charging energy (E0

i − Ecur
i ) could be satisfied; (2) For the sensors in Working 

Status, the charging priority is assigned as pri(si) = 1
D I . This priority assignment measure can widen the gap between the 

pairs of the priorities belonged to different requirements.
Phase 2.2: Charging Node Filtering
Based on the heterogeneous-weighted graph G = (V , E, V W , EW ) and m clusters T ′

j (1 ≤ j ≤ m) obtained by Phase 1, 
we perform charging energy assignment for each charger c j on the heterogeneous-weighted subgraph T ′

j . The main idea is 
filtering the nodes with necessary charging requirements, e.g. sensors in Charging Status, and assigning them the charging 
energy.

Considering high charging efficiency and limitation of each charger’s initial energy Emax , we filter the sensors with 
necessary charging requirements, e.g. the ones in Charging Status. Since Emax is limited which may only satisfy part of 
sensors’ charging requirements, we firstly reserve the consumption on charging movement Eres

moving from Emax , which is 
calculated in Steps 25-26. And the calculation is based on the length of the Minimum Hamilton Cycle which can guarantee 
to pass across all the sensors in Charging Status. Then the remaining energy Emax − Eres

moving can be assigned for charging 
sensors.

Based on the reserved Emax , we assign the charging amount according to the sensors’ charging priorities, filter the 
sensors with necessary charging requirements and eliminate the ones with unnecessary requirements. The assignment is 
realized in two loops as shown in Lines 28-31: firstly the charging requirement of the sensors in Charging Status can be 
satisfied and the assigned charging amount is Echarging

j,i = pri(si)

D I2 · (E0
i − Ecur

i ). If the charger has the remaining energy, the 

sensors in Working Status can be charged. The filtering is based on the assigned charging energy Echarging
j,i as shown in Lines 

32-33: if Echarging
j,i = 0, si will be out of the consideration later and eliminated from V [T ′

j] and E[T ′
j]. Then we obtain the 

filtered node set V ′[T ′ ], node set E ′[T ′ ] and the charging energy assignment EnergySet = {Echarging |1 ≤ j ≤ m, 1 ≤ i ≤ n}.
j j j,i
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Phase 3: Charging Path Planning for Ring-track
In the constructed heterogeneous-weighted graph G = (V , E, V W , EW ), the weights’ distribution on both nodes and 

edges is not beneficial to global optimization. Thus the two kinds of energy cost should be measured by uniform standard, 
and we adopt the edge weight as the integrated measurement. Here we introduce an equivalent transformation method of 
blending node weights into edge weights, as shown in Lines 37-41 of Algorithm 1: for each node in the filtered set V ′[T ′

k], 
we revalue the node weight according to the charging priority and the uniform magnitude of node weights and edge 
weights, i.e., weight′(si) = 1

pri(si)
· β · avrdist · weight(si)

E0
i

, where avrdistk =
∑

1≤i, j≤n dist(vi ,v j)

|E ′[T ′
k]|

is the average distance among all 
the pairs of sensors. Note that avrdistk is a normalization factor for modifying the node weight into the similar magnitude 
with those of the edge weight. And 1

pri(si)
indicates that the node with higher charging priority has smaller node weight, 

which is consistent with that the node pair with low moving cost has smaller edge weight. Since the sensor’s charging can 
be finished by the charger’s only one pass, we equally divide the node weight into two parts, e.g. 1

2 weight′(si). And then 
we distribute the divided node weight to the weight of the node’s associated edges, i.e., weight′(vi, v j) = weight(si, s j) +
1
2 weight′(si) + 1

2 weight′(s j), which updates the edge weight set. Then we will perform charging planning based on the 
transformed edge-weighted graph T ′

j = (V ′[T ′
j], E ′[T ′

j], EW ′[T ′
j]).

Based on the auxiliary graph T ′
j , we perform the algorithm for TSP Problem and the charging path path j of the charger 

c j can be obtained. The detailed description is shown in Algorithm 1.

Algorithm 1 Ring-Wandering Algorithm for CEEM-MC Problem.

Input: S = {s1, s2, · · · , sn}, {E0
i |1 ≤ i ≤ n}, {Er

i |1 ≤ i ≤ n}, {C(si)|1 ≤ i ≤ n}, a set C = {c1, c2, ..., cm} and Emax

Output: (PathSet, EnergySet), where PathSet = {path j|1 ≤ j ≤ m} and EnergySet = {Echarging
j,i |1 ≤ j ≤ m, 1 ≤ i ≤ n}

1: //Phase 1: Charging Region Division for Ring-track
2: //Phase 1.1: Heterogeneous-weighted Graph Construction
3: Set V , E , V W , EW ← ∅
4: V ← S

⋃
C , E = {(vi, v j)|∀vi, v j ∈ V and dist(vi, v j) ≤ l0)}

5: for ∀vi ∈ V do
6: weight(vi) = α · (E0

i − Er
i ), V W = V W

⋃{weight(vi)}
7: for ∀(vi, v j) ∈ E do
8: weight(vi, v j) = β · dist(vi, v j), EW = EW

⋃{weight(vi, v j)}
9: //Phase 1.2: Charging Clustering for Ring-track

10: Perform Kruskal Algorithm on G = (V , E, EW ) and obtain a minimum spanning tree T
11: Sort the edges on T in increasing weight {(v1, v2), (v2, v3), ..., (v |V |−1, v |V |)}
12: for 1 ≤ i ≤ m − 1 do
13: T ← T \ (vi, vi+1)

14: Denote the disconnected subgraph of T as {T1, T2, ..., Tm}
15: for ∀T j ∈ T do
16: Calculate the center cluster j based on the average edge weight in T j

17: Perform K-Means Algorithm on (T , cluster1, cluster2, ..., clusterm) and obtain {T ′
1, T

′
2, ..., T

′
m}

18: //Phase 2: Charging Energy Assignment
19: //Phase 2.1: Charging Prioritization

20: Set the divergence indicator D I = �max1≤i, j≤n
E0

i

E0
j
�.

21: for ∀si ∈ S do
22: pri(si) = D I2 for si in Charging Status; pri(si) = 1

D I for si in Working Status

23: //Phase 2.2: Charging Node Filtering
24: for 1 ≤ j ≤ m do
25: Perform TSP Algorithm on T ′

j[{si|∀si in Charging Status}] and obtain a Hamilton Cycle with edge weight Eres
moving

26: Emax = Emax − Eres
moving

27: Set V ′[T ′
j] = V [T ′

j], E ′[T ′
j] = E[T ′

j], EW ′[T ′
j] ← ∅, Echarging

j,i = 0
28: while Emax > 0 do
29: For each si with pri(si) ≥ 1, Echarging

j,i = pri(si)

D I2 · (E0
i − Er

i ), Emax = Emax − Echarging
j,i

30: while Emax > 0 do
31: For each si with pri(si) < 1, Echarging

j,i = pri(si)

D I2 · (E0
i − Er

i ), Emax = Emax − Echarging
j,i

32: for ∀si ∈ V [T ′
j] do

33: If Echarging
j,i = 0, V ′[T ′

j] = V ′[T ′
j] \ {si}, E ′[T ′

j] = E ′[T ′
j] \ {(si, s j)|∀s j ∈ V }

34: EnergySet = {Echarging |1 ≤ j ≤ m, 1 ≤ i ≤ n}
j,i
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35: //Phase 3: Charging Path Planning for Ring-track
36: for 1 ≤ j ≤ m do
37: for ∀si ∈ V ′[T ′

j] do

38: weight′(si) = β · avrdist · 1
pri(si)

· weight(si)

α·E0
i

, where avrdist =
∑

1≤i, j≤n dist(si ,s j)

|E ′|
39: for ∀(si, s j) ∈ E ′[T ′

j] do

40: weight′(si, s j) = weight(si, s j) + 1
2 weight′(si) + 1

2 weight′(s j)

41: EW ′[T ′
j] = {weight′(si, s j)|∀(si, s j) ∈ E ′[T ′

j]}
42: Perform TSP Algorithm on T ′

j = (V ′[T ′
j], E ′[T ′

j], EW ′[T ′
j]) and obtain the charging path j

43: PathSet = {path j|1 ≤ j ≤ m}

4.2. Eight-Wandering Algorithm for CEEM-MC Problem

We propose the second algorithm for solving CEEM-MC Problem, Eight-Wandering Algorithm. This algorithm is also 
composed of three phases, but Phase 1 (Charing Region Division) and Phase 3 (Charging Path Planning) are different from 
those in Ring-Wandering Algorithm, whose details are given in the following parts.

Phase 1: Charging Region Division for 8-track
In this phase, we also adopt the K-Means Algorithm based on Minimum Spanning Tree to partition the sensor set. 

Different from the Charging Region Division for ring-track, the sensor set is divided into 2m subsets which will be assigned 
to the m chargers respectively. Partitioning into not m but 2m subsets is for avoiding wide variance in the chargers’ energy 
consumption due to the different iteration effect of the K-Means Algorithm. The detailed process is as follows:

(i) We construct the Minimum Spanning Tree (MST) T for the transformed edge-weighted graph G ′ = (V ′, E ′, EW ′) via 
the Kruskal Algorithm.

(ii) We sort the edges on T in increasing edge weight {(s1, s2), (s2, s3), ..., (s|V ′|−2, s|V ′ |−1)} and eliminate the first 2m − 1
edges in the sort, i.e., delete {(s1, s2), (s2, s3), ..., (s2m−1, s2m)}. Then the MST T is divided into 2m disconnected subgraph 
{T1, T2, ..., T2m} in Lines 5-8 of Algorithm 2.

(iii) For each connected subgraph Tk (1 ≤ k ≤ 2m), the average edge weight will be calculated for finding the initial 
clustering center and finally we perform the K-Means Algorithm from the 2m initial clustering centers and obtain 2m
divided clusters T ′

k (1 ≤ k ≤ 2m) in Lines 9-11 of Algorithm 2. As shown in the subgraph (a) in Fig. 2, there are 8 clusters 
generated by K-Means Algorithm for the case of m = 4.

Fig. 2. The instance on Charging Clustering and Charging Path Planning of Eight-Wandering Algorithm.
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(iv) Based on the 2m subgraph T ′
k , the region division is double realized, e.g. the region is divided into 8 subregions 

based on the 8 clusters in the subgraph (b) in Fig. 2. For the convenience of the later phases, we divide the 2m new cluster 
centers into m pairs based on their shortest distances: we firstly order each pair of cluster centers in ascending order of 
their distances; then for each round, we select the shortest unconsidered pair under the constraint that one cluster center 
cannot belong to more than one pair, which is repeated until all the clusters are paired. Then we number each pair of 
clusters as clusterk, clusterk′ (1 ≤ k ≤ m).

(v) We match {T ′
1, T

′
2, ..., T

′
2m} into m pairs according to their cluster centers’ new numbers obtained in (iv), and combine 

each pair T ′
k

⋃
T ′

k′ into one T ′
k for Phase 2.

Phase 2: Charging Energy Assignment
For charing energy assignment, the main idea is the same as that in Ring-Wandering Algorithm, which generates the 

assignment result EnergySet = {Echarging
j,i |1 ≤ j ≤ m, 1 ≤ i ≤ n}.

Phase 3: Charging Path Planning for 8-track
For each subgraph T ′

j (1 ≤ j ≤ 2m), we transformed the heterogeneous-weighted graph into an equivalent edge-weighted 
graph according to the same idea as that in Algorithm 1 (Lines 17-21 in Algorithm 2). Then we perform TSP Algorithm on 
each edge-weighted graph T ′

j = (V ′[T ′
j], E ′[T ′

j], EW ′[T ′
j]) and obtain the path path′

j as shown in Line 22 in Algorithm 2.
Based on the obtained 2m paths, we generate m eight-wandering routes which is shaped like the number 8 as follows: 

for each pair T ′
k

⋃
T ′

k′ obtained in Phase 1, their paths path′
k and path′

k′ can be regarded as two cycles since they are Hamil-
ton Cycles. Then we find a knot to tie such two cycles, i.e., we select the nearest two nodes v and v ′ which are respectively 
on path′

k and path′
k′ and link the two nodes as an edge (v, v ′). Finally, two cycles path′

k , path′
k′ and the knot (v, v ′) com-

pose the eight-wandering route. As shown in the subgraph (c) in Fig. 2, there are 4 eight-wandering paths generated for 4
chargers. The detailed description of Eight-Wandering Algorithm for CEEM-MC Problem is shown in Algorithm 2.

Algorithm 2 Eight-Wandering Algorithm for CEEM-MC Problem.

Input: S = {s1, s2, · · · , sn}, {E0
i |1 ≤ i ≤ n}, {Er

i |1 ≤ i ≤ n}, {C(si)|1 ≤ i ≤ n}, a set C = {c1, c2, ..., cm} and Emax

Output: (PathSet, EnergySet), where PathSet = {path j|1 ≤ j ≤ m} and EnergySet = {Echarging
j,i |1 ≤ j ≤ m, 1 ≤ i ≤ n}

1: //Phase 1: Charging Region Division for Ring-track
2: //Phase 1.1: Heterogeneous-weighted Graph Construction (the same as Algorithms 1)
3: //Phase 1.2: Charging Clustering for 8-track
4: Perform Kruskal Algorithm on G = (V , E, EW ) and obtain a minimum spanning tree T
5: Sort the edges on T in increasing weight {(v1, v2), (v2, v3), ..., (v |V |−1, v |V |)}
6: for 1 ≤ i ≤ 2m − 1 do
7: T ← T \ (vi, vi+1)

8: Denote the disconnected subgraph of T as {T1, T2, ..., T2m}
9: for ∀T j ∈ T do

10: Calculate the center cluster j based on the average edge weight in T j

11: Perform K-Means Algorithm on (T , cluster1, cluster2, ..., cluster2m) and obtain {T ′
1, T

′
2, ..., T

′
2m} and their new cluster 

centers {cluster′
1, cluster′

2, ..., cluster′
2m}

12: Divide the 2m new cluster centers into m pairs based on their shortest distances and number each pair as k, k′
(1 ≤ k ≤ m)

13: Reorder {T ′
1, T

′
2, ..., T

′
2m} according to the their cluster centers’ new numbers and combine each pair T ′

k

⋃
T ′

k′ into one 
T ′

k in Phase 2.
14: //Phase 2: Charging Energy Assignment (the same as Algorithms 1)
15: //Phase 3: Charging Path Planning for 8-track
16: for 1 ≤ j ≤ 2m do
17: for ∀si ∈ V ′[T ′

j] do

18: weight′(si) = β · avrdist · 1
pri(si)

· weight(si )

α·E0
i

, where avrdist =
∑

1≤i, j≤n dist(si ,s j)

|E ′|
19: for ∀(si, s j) ∈ E ′[T ′

j] do

20: weight′(si, s j) = weight(si, s j) + 1
2 weight′(si) + 1

2 weight′(s j)

21: EW ′[T ′
j] = {weight′(si, s j)|∀(si, s j) ∈ E ′[T ′

j]}
22: Perform TSP Algorithm on T ′

j = (V ′[T ′
j], E ′[T ′

j], EW ′[T ′
j]) and obtain the charging path′

j

23: for 1 ≤ k ≤ m do
24: Find the closest two nodes respectively on path′

k and path′
k′ , v and v ′

25: pathk ← path′
k

⋃
path′

k′
⋃{(v, v ′)}

26: PathSet = {pathk|1 ≤ k ≤ m}
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4.3. Theoretical analysis

Before analyzing the time complexity of the two algorithms for CEEM-MC Problem, we reviewed the time performance 
of the referenced algorithms, Kruskal Algorithm, K-Means Algorithm and TSP Algorithm. Firstly, in the time complexity 
computation of Kruskal Algorithm, the dominant part is the edge sorting whose time complexity is O (|E| log |E|), where E
is the number of edges in the graph [18]. Secondly, running a fixed number t of iterations of K-Means Algorithm takes only 
O (t ·k ·n ·d), for n (d-dimensional) points, where k is the number of cluster) [19]. Thirdly, TSP Algorithm is applied in Phase 
1.2 and Phase 2, which has a larger time complexity of O (n3), where n is the number of nodes in the graph [20].

Theorem 2. The time complexity of Ring-Wandering Algorithm is O (n3), where n is the number of sensors.

Proof. According to the description of Algorithm 1, there are three parts as shown in Algorithm 1, Phase 1, Phase 2 and 
Phase 3. We analyze the time complexities for these parts as follows:

For the Phase 1, Phase 1.1 (Heterogeneous-weighted Graph Construction) performs for all the nodes and edges, whose 
time consumptions are directly related to the number of nodes and that of edges. Thus the time complexity is O ((n + m)2). 
Here we consider the number of sensors is much larger than that of chargers, i.e., m � n, according to the most practical 
applications. Thus the time complexity of Phase 1.1 is O (n2).

Phase 1.2 first performs Kruskal Algorithm whose time complexity is O (n2 · log n) here. Then the clustering for the m
subgraph T j costs O (m · n) based on K-Means Algorithm, where the number of iterations t is much less than the number 
of sensors n, which can be regarded as a constant and the dimension number d = 2. Thus the time complexity of Phase 1.2 
is O (n2 · log n).

For Phase 2, the charging priority assignment has the time complexity of O (n) in Phase 2.1. And the node filtering in 
Phase 2.2 has the time complexity of O (m · n), which is less than O (n2). Thus the time complexity of Phase 2 is O (n2).

For Phase 3, the edge-weighted graph transformation also performs for all the nodes and edges like Phase 1.1. Thus its 
time complexity is O (n2). Furthermore, TSP Algorithm has a larger time complexity of O (n3) [20]. Thus the time complexity 
of Phase 3 is O (n3).

Therefore the time complexity of Algorithm 1 is O (n3), which completes the proof. �
Since the two algorithms for CEEM-MC Problem are similar on the main operating phases, the same conclusion on time 

complexity can be drawn for Eight-Wandering Algorithm as follows.

Theorem 3. The time complexity of Eight-Wandering Algorithm is O (n3), where n is the number of sensors.

5. Simulation results

We perform the simulation experiments in a two-dimension square planar with the side length of M . On the plane, 
there are n sensors randomly deployed with the uniform maximum battery capacity E0, and m mobile chargers with their 
initial energy Emax . For each sensor si , si ’s remaining battery energy denoted as Er

i is valued in the range of [0, ω1 · E0]. 
The indictor for the sensors’ status, Elow , is assigned as ω2 · E0. Here we set ω1 = 4

5 and ω2 = 3
10 according to the sensors’ 

covering energy consumption model and the battery capacity. The moving distance limitation between any pair sensors l0
is set as 50.

For the optimization goal of CEEM-MC Problem, we evaluate the proposed algorithms, Ring-Wandering Algorithm and
Eight-Wandering Algorithm, in terms of the energy efficiency, which is denoted as Energy Efficiency. We evaluate their 
performance based on the changes of five parameters, the number of chargers m, the initial energy of the charger Emax , 
the number of sensors n, and the maximum energy capacity of sensors E0 and the side length of the region M . These 
parameters are considered as the potential factors on performance of charing scheduling. And we consider the following 
five groups of parameter settings and we repeat the experiment 100 times and adopt the average values for each setting: 
(1) m varies from 4 to 16 by the step of 2 with fixed n, M , E0 and Emax; (2) Emax varies from 2500 to 5500 by the step of 
500 with fixed n, M , E0 and m; (3) n varies from 200 to 800 by the step of 100 with fixed m = 8, 12, M , E0 and Emax; (4) 
E0 varies from 40 to 100 by the step of 20 with fixed m = 8, 12, M , n and Emax; (5) M varies from 40 to 160 by the step 
of 20 with fixed n = 400, 600, m = 8, 12, E0 and Emax .

We firstly analyze the algorithm performance influenced by the parameters about the chargers, m and Emax . For the 
number of chargers m, both of two algorithms show the stable status before the peak values appear at m = 12 for Ring-
Wandering Algorithm and m = 10 for Eight-Wandering one, which is shown in subgraph (a) in Fig. 3. When m is larger 
than the peak value, the energy efficiency has a downtrend. It is because that the more chargers and the sensors with a 
fixed number may present a ‘supply exceeds demand’ condition, i.e., the additional chargers cost more moving energy to 
charging the sensors which can be charged by fewer chargers, which reduces the energy efficiency. For the initial energy of 
the chargers Emax , its influence on the charging scheduling algorithms is relatively mild, and the performance changes of 
two algorithms are in the range of [0.60, 0.85], which can be seen in subgraph (b) in Fig. 3. The charging consumption of 
chargers is more decided by the charging requirement of sensors than the initial energy on chargers.
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Fig. 3. Energy Efficiency by Comparing two algorithms on charger parameters.

Fig. 4. Energy Efficiency by Comparing two algorithms on sensor parameters.

Secondly, we analyze the algorithm performance affected by the parameters about the sensors, n and E0, as shown in 
Fig. 4. On the one hand, with the increasing of the network scale, the algorithm performance presents a rising trend until 
n > 500 for Ring-Wandering Algorithm and n > 400 for Eight-Wandering one in subgraph (a) of Fig. 4. That is because that 
the limited number of chargers cannot satisfy the charging requirement of the increasing number of sensors, which present 
a status like ‘supply falls short of demand’. Thus the energy efficiencies of two algorithms are both decreased. When the 
number of chargers becomes more sufficient, the gap between two algorithms gets narrower in subgraph (b) of Fig. 4. On 
the other hand, the battery capacity of sensors E0 has less influence on the performance than n in subgraphs (c) and (d) of 
Fig. 4. With the growth of E0, the increasing charging requirement has been met and the moving energy cost stays fixed, 
thus the energy efficiency can be increased.
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Fig. 5. Energy Efficiency by Comparing two algorithms on region parameter.

We thirdly analyze the algorithm performance impacted by the parameter about the deployment region, M . As shown in 
Fig. 5, despite Eight-Wandering Algorithm still shows more advantages, both of the two algorithms’ performance presents 
an upward trend and trends to be stable and near to each other when M > 140 in subgraph (a) and M > 100 in subgraph 
(b) in Fig. 5. The reason is that the network’s deployment density becomes sparse with the enlarging of the deployment 
region, which results in less difference on the lengths of the wandering paths. Thus the difference path planning schemes 
will generate the similar energy efficiencies.

Finally, we can draw the conclusion that depending on the advantage of balancing each charger’s moving energy con-
sumption, Eight-Wandering Algorithm outperforms Ring-Wandering Algorithm in most cases. Among the influencing factors 
for the two charging scheduling algorithms, the number of chargers m and the network scale n have more influence than 
the initial energy of the chargers Emax , the energy capacity of the sensors E0 and the region scale M in terms of the energy 
efficiency of the whole charging process.

6. Conclusion

With the consideration of maximizing the energy efficiency, we investigate a charging planning problem for multiple 
chargers in WRSNs. Based on the NP-hardness proof of the problem, we propose two algorithms, Ring-Wandering Algorithm 
and Eight-Wandering Algorithm on heterogeneous-weighted graph construction and edge-weighted graph transformation to 
increase the charging contribution. The algorithms adopt the idea of K-Means Algorithm to divide the charged region of 
each charger, and perform the TSP Algorithm to minimize the moving consumption. To evaluate the proposed algorithms, 
we compare their performance in terms of energy efficiency. The simulation results show the advantages of Eight-Wandering 
Algorithm and the influences of the critical parameters. To extend this research, we will improve the charging scheduling 
strategy for different optimization goals and extend the strategies to the three-dimensional practical applications.
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