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Abstract. Wireless Rechargeable Sensor Networks (WRSNs) has emerged with
the advantages of high charging efficiency, which can guarantee the timeliness of
charging and the service quality of network coverage. To guarantee the contin-
uous coverage of the rechargeable sensors, continuous power supply for sensors
becomes more important. In this paper, we focus on the Charging Scheduling
problem with Maximized Energy Efficiency in WRSNs (CS-MEE Problem), in
which a mobile charger is used to charge the low energy sensors in WRSN. The
problem aims to optimize travelling path of the mobile charger for maximiz-
ing the charging energy efficiency of the charging process. We firstly give the
mathematical model and NP-hardness proof of the problem. Then we propose an
heterogeneous-weighted-graph algorithm, called CS-HWG, to solve the problem.
To evaluate the performance of the proposed algorithm, the extensive simulation
experiments are conducted under four influencing factors in terms of the energy
efficiency of the mobile charger to verify the effectiveness of the algorithm.

Keywords: WRSNs · Charging scheduling · Energy efficiency ·
Heterogeneous-weighted-graph

1 Introduction

The most applications of Wireless Sensor Networks (WSNs) have the common require-
ment of continuous monitoring [1], which poses challenges to the battery-powered sen-
sors and brings the energy efficiency problems in virtual backbone construction [2,3]
and broadcast and multicast routing [4]. To solve the energy problems of the WSNs,
most researchers proposed two kinds of strategies, i.e., one is the wake-sleep batch
scheduling of sensors, and another one is collecting energy from external environment
based on energy transformation module of sensors. However, the former strategy may
cause the reduction of data reliability and the latter one has low efficiency of energy
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transformation. To this end, Wireless Rechargeable Sensor Networks (WRSNs) has
emerged with the advantages of high charging efficiency via static charging stations
or mobile charging vehicles, which can guarantee the timeliness of charging and the
service quality of network coverage.

The most important problem of the WRSN with mobile chargers is to design the
charging plans which mainly focuses on the charging pattern, charging order arrange-
ment and charging amount assignment. This paper studies the charging planning prob-
lem of a mobile charger for charging sensors from the perspectives of charging amount
assignment and charging path planning, which is to maximize the charging efficiency
of the charger for guaranteeing the continuously works of the WRSN.

The existing research on the charing planning of mobile chargers focused on two
aspects, demand-driven charging strategies and periodic charging ones. For the demand-
driven charging strategies [5] proposed a path planning algorithm to choose the sensors
in low-power status and satisfy their charging requirement based on a threshold value β
on the remaining energy. The authors in [6] predicted the energy consumption of sensors
and transformed the charging cost as a monotone submodular function, then introduced
a (1− 1

e )/4-ratio algorithm for the problem. The authors in [7] proposed a spatial-and-
temporal optimization algorithm for real-time charging for eliminating the exhausted
sensors and adding the powered new ones. The studies in [8,9] aimed at designing the
algorithm of path planning and charging assignment to maximize the network lifetime
and minimize the charging consumption.

For periodic charging strategies, the authors in [10] designed a constant-ratio
approximation algorithm for charging path planning problem under the powering lim-
itation model. And the authors in [11] applied the region-separation and charging-
discretion into the charing solution and proposed a 1−ξ

4(1−1/e) -ratio algorithm. The authors
in [12] considered the one-to-many charging model and designed a constant-ratio algo-
rithm. Recently, the new charging technology has drawn attentions of researchers like
the (1−ξ )(1− e)/e-ratio algorithm based on the energy transferring depending on the
obstacles in [13], the (3+ξ )-ratio algorithm for multiple-chargers in one-vehicle model
in [14] and the periodic charging algorithm with the optimal movement speed in [15].

However, the existing literature mentioned above did not consider the energy effi-
ciency. In this paper, we consider the demand-driven charging planning for a single
mobile charger in WRSNs, which includes the charging path planning and the charging
energy assignment to maximize the energy efficiency of the charger. The contributions
of this paper are shown as below.

(1) We propose a single-charger charging planning problem for WRSNs, called the
Charging Scheduling problem with Maximized Energy Efficiency in WRSNs (CS-
MEE Problem) based on the energy consumption model. The goal of the problem
is to maximize the charging energy efficiency of the charging process in a period.
The mathematical model and NP-hardness proof of problem are both given.

(2) To solve the CS-MEE problem, we propose an heterogeneous-weighted-graph
algorithm, CS-HWG Algorithm, which is composed of Charging Energy Assign-
ment and Charging Path Planning. And we analyze the time complexity of the
algorithm.
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(3) The extensive simulations are performed to verify the effectiveness of the proposed
algorithm for the CS-MEE problem.

This paper is organized as follows. Section 2 introduces the network model, energy
consumption model and problem formulation. In Sect. 3, we propose a heuristic algo-
rithm to solve the problem and analyze the approximation ratio of the algorithm. Simu-
lations are shown in Sect. 4. Section 5 concludes this paper.

2 System Model and Problem Formulation

2.1 Network Model

We consider a WRSN composed of n stationary rechargeable sensors deployed in a
two-dimensional plane, which are denoted by set S = {s1,s2, ...,sn}. Each sensor si is
deployed at the position (x[si],y[si]) and powered by a rechargeable battery with the
maximum energy capacity E0

i . These sensors perform the area coverage task collab-
oratively and the current battery energy of si is denoted as Ecur

i . We assume that the
coverage strategy is determined or periodically adjusted depending on their initial ener-
gies. There are three kinds of status of sensors depending on the charging requirements
based on two thresholds, Elow and Emin: (1) Working Status. Elow < Ecur

i ≤ E0
i ; (2)

Low-power Status. Emin < Ecur
i ≤ Elow; (3) Charging Status. 0< Ecur

i ≤ Emin.
There is one mobile charger to charge sensor nodes with low remaining energy,

which is denoted as node c. Charger c starts the charging task from its service station
located at c0 = (x[c],y[c]) and ends the task back to its station. And the charger has the
initial energy Emax in the assumption that Emax can satisfy the charging requirement of
all the sensors or the charging amount for sensors cannot be less than θ ·Emax, where
θ is a parameter closed to 1. Since the sensors with lower remaining energy may cause
exhaustion and monitoring failure, the charging task firstly guarantee the impletion of
the sensors in Charging Status. If there is the remaining energy for the charger, the
charging for sensors in Low-power Status will be considered and the charging for
sensors inWorking Status is in a similar way.

2.2 Energy Consumption Model

In the cooperative coverage task, the static sensors are in charge of covering the target
area and the mobile charger is responsible for charging the sensors into Working Status.
The energy consumption of chargers includes two aspects:

(1) Charging Energy Consumption. Due to the determined coverage strategy,
the maximum charging energy for sensor si with the energy capacity E0

i and the
remaining energy Ecur

i in the current coverage mission. Since the coverage schedul-
ing is assumed to be determined in advance, Ecur

i has been known before charg-
ing scheduling. We denote the scheduled charging energy for si as C(si). Further-
more, we consider the inevitable energy loss in the process of charging and the
charging energy consumption is regarded as α time of the required amount, i.e.
Echarging
i = α ·C(si) ·gi, where gi are defined as follows:
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gi =

{
1, if c has been scheduled to charge sensor si,

0, otherwise.
(1)

(2) Moving Energy Consumption. Considering the charging model in close range,
the mobile charger should move to the position of the sensor with low power for
charging. Thus the moving distance is the Euclidean distance and calculated based
on the locations of the charger and sensor, which is denoted as dist(c,si). Here we
denote the energy consumption rate as β , thus the moving energy consumption is
Emoving
i = β ·dist(c,si) ·gi.

Based on the two kinds of energy consumption of chargers, we define the energy
efficiency of the charging process as follows.

Definition 1 (Charging Energy Efficiency). Based on a charging scheduling, the
energy efficiency is the proportion of the energy consumption on charging in the overall

energy cost, which is denoted as EE = ∑si∈S E
charging
i

∑si∈S(E
charging
i +Emoving

i )
.

2.3 Problem Formulation

We study the charging planning problem to realize the goal of maximizing the charg-
ing energy efficiency. The charging scheduling is composed of two parts, the charging
energy assignment denoted as EA = {C(si)|1 ≤ i ≤ n} (where C(si) is the scheduled
charging energy on si) and the charging path pathc denoted as a sequence of locations
passing by c. Based on the above preliminaries, we refer to the problem as the Charging
Scheduling problem with Maximized Energy Efficiency in WRSNs (CS-MEE Prob-
lem), whose detailed definition is shown as follows.

Definition 2 (CS-MEE Problem)
Given a set S = {s1,s2, · · · ,sn} of n rechargeable sensors where each sensor si has the
battery capacity E0

i and the initial energy Ecur
i , one mobile charger c with its starting

service station c0 and the initial energy Emax, Charging Scheduling problem with Maxi-
mized Energy Efficiency in WRSNs (CS-MEE Problem) is to find a charging scheduling
strategy denoted as two-tuples (EA, path), such that

(1) the pathc starts from c0 and ends at c0,
(2) for each sensor si ∈ S, Echarging

i +Ecur
i ≤ E0

i ,
(3) the Charging Priorities(CP) for the sensors are increased according to their status:

CP(Working Status)<CP(Low-power Status)<CP(Charging Status);
(4) θ ·Emax ≤ ∑si∈S(E

charging
i +Emoving

i ) ≤ Emax, or all sensors can be charged by c,
where θ is a parameter closed to 1,

(5) the charging energy efficiency EE = ∑si∈S E
charging
i

∑si∈S(E
charging
i +Emoving

i )
is maximized.
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In the following, we will introduce the mathematical formulation of the CS-MEE
Problem.

Maximize
∑si∈S

(
α ·C(si) ·gi

)
∑si∈S

(
α ·C(si) ·gi+β ·dist(c,si) ·gi

) (2)

s.t.

Ecur
i +α ·C(si) ·gi ≤ E0

i i= 1,2, · · · ,n (3)

θ ·Emax ≤ ∑
si∈S

(
C(si) ·gi+β ·dist(c,si) ·gi

) ≤ Emax (4)

gi ∈ {0,1} i= 1,2, · · · ,n (5)

The function (2) is to maximize the charging energy efficiency. Constraint (3)
express that the charged energy amount of each sensor cannot beyond the sensor’s
battery capacity. Constraint (4) is the charging energy consumption constraint which
ensures that the charging energy amount of the charger will not exceed the initial energy
of the charger. Constraints (5) defines the domain of the variable gi.

In the following theorem, we will give the NP-hardness proof of the problem.

Theorem 1. CS-MEE Problem is NP-hard.

Proof. To prove the NP-hardness of CS-MEE Problem, we consider a special case of it:
all the sensors are in Charging Status (gi = 1 for 1 ≤ i ≤ n) and they have the same cur-
rent energies Ecur

i s. In this case, the charging energy for sensor si,C(si) is the maximum
amount E0

i −Ecur
i , which is unified represented as C.

Thus the objective of the problem is driven to bemaximizing
∑si∈S

(
α·C(si)

)
∑si∈S

(
α·C(si)+β ·dist(c,si)

) .
Based on equivalent conversion, the objective can be rewritten into maximizing

1
1+ β

α·C ∑si∈S dist(c,si)
. Note that α , β and C are predefined or can be calculated. By denot-

ing β
α·C as a constant const the objective becomes from maximizing 1

1+const·∑si∈S dist(c,si)
to minimizing ∑si∈S dist(c,si).

It can be easily found that the problem in this special case is equivalent to the Trav-
elling Salesman Problem (TSP), which has been proved NP-hard [16]. Since a special
case of CS-MEE problem is NP-hard, CS-MEE problem is also NP-hard, which com-
pletes the proof. �

3 Algorithms for CS-MEE Problem

In this section, we propose an heterogeneous-weighted-graph algorithm, CS-HWG
Algorithm, which is composed of two phases, Charging Energy Assignment and
Charging Path Planning. And we will analyze the time complexity of CS-HWG
Algorithm.

We firstly give the preliminaries in Lines 1–7 of Algorithm 1: since the sen-
sors with the higher charging requirements have larger priorities, we give a baseline
value according to the divergence indicator among the sensors’ battery capacities, i.e.,
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DI = �max1≤i, j≤n
E0
i

E0
j
�. We assign the priorities for the three kinds of sensors’ status

respectively: (1) For the ones in Charging Status, its priority pri(si) = DI2; (2) For the
sensors in Low-Power Status, pri(si) = DI; (3) For the sensors in Working Status, the
charging priority is assigned as pri(si)= 1

DI . This priority assignment measure can guar-
antee that the gap between the pairs of the priorities belonged to different requirements
can be widen. Furthermore, it also consider the charging demands and the energy capac-
ity of sensors: for the sensors in Charging Status, the charging requirement is greatest
and the maximum charging energy (E0

i −Ecur
i ) could be satisfied. Thus pri(si) = DI2

which is larger than those in other two statuses.

Phase 1: Charging Energy Assignment

Phase 1.1: Heterogeneous-weighted Graph Construction
Constructing the auxiliary graph is a classic method to model the practical problem, and
the auxiliary graph is either a node-weighted graph or an edge-weighted graph. In CS-
MEE Problem, we construct a particular auxiliary graph with node-weights and edge-
weights, heterogeneous-weighted graph, as shown in Lines 10–19 of Algorithm 1. The
node set is composed of the positions of sensors and a charger,V = S

⋃
C. With the con-

sideration of the sensor deployment density, we give the assumptions for spares graphs
and dense ones. For spares graphs, we introduce a limitation value l0 of the moving dis-
tance between twice of charging, which can avoid excess consumption of the chargers’
energy for some single charging. Thus E = {(si,s j)|∀si,s j ∈ V and dist(si,s j) ≤ l0}.
For dense graphs, l0 can be regarded as infinity.

The weight assignment is with the consideration of charging cost and moving cost:
When considering the charging cost, it is decided by each sensor’s maximum charg-
ing requirement or the charged energy amount. Thus the node weight is denoted as
weight(si) = α ·(E0

i −Ecur
i ) and the node weight setVW = {weight(si)|∀si ∈ S}. When

considering the moving cost, it is determined by the Euclidean distances between the
pairs of nodes in the network, i.e., the edge weight is calculated by weight(si,s j) =
β · dist(si,s j). And the edge weight set EW = {weight(si,s j)|∀(si,s j) ∈ E}. Then we
complete the construction of the heterogeneous-weighted graph, G= (V,E,VW,EW ).

Phase 1.2: Charged Node Filtering
Considering high charging efficiency and limitation of the charger’s initial energy Emax,
we filter the nodes with necessary charging requirements like those in Charging Status.
Since Emax is limited to satisfy the charging requirements for part of sensors, we firstly
reserve the consumption on charging movement Eres

moving, which is calculated in Step 21.
And the calculation is based on the length of the Minimum Hamilton Cycle which can
guarantee to pass across all the sensors in Charging Status. Then the remaining energy
Emax −Eres

moving can be assign for charging sensors.
Based on the new Emax, we assign the charging amount according to the sensors’

charging priorities and filter the sensors with necessary charging requirements. The
assignment is realized in three loops as shown in Lines 24–28: firstly the charging
requirement of the sensors in Charging Status can be satisfied and the assigned charging
amount is C(si) =

pri(si)
DI2

· (E0
i −Ecur

i ). If the charger has the remaining energy, the sen-
sors in Low-Power Status can be charged. The charging for sensors in Working Status
is in the similar way.
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The filtering is based on the assigned charging energy C(si) as shown in Lines 29–
31: if C(si) = 0, si will be out of the consideration later and eliminated from V and E.
The we obtain the filtered node set V ′ and node set E ′.

Phase 1.3: Edge-weighted Graph Transformation
To solve the problem on the constructed heterogeneous-weighted graph, the weights’
distribution on both nodes and edges is not beneficial to global optimization. In other
words, the energy consumption of chargers is composed of charging cost and moving
cost, which cannot exceed the maximum limitation Emax. Thus the two kinds of energy
cost should be measured by uniform standard, and we adopt the edge weight as the
measurement. Here we introduce an equivalent transformation method of blending node
weights into edge weights, as shown in Lines 34–40 of Algorithm 1:

For each node in the filtered set V ′, we revalue the node weight with the consid-
eration of the charging priority and the uniform magnitude of node weights and edge

weights, i.e., weight ′(si) = 1
pri(si)

·β ·avrdist · weight(si)
E0
i

, where avrdist = ∑1≤i, j≤n dist(si,s j)
|E ′|

is the average distance among all the pairs of sensors. Note that avrdist is a normal-
ization factor for modifying the node weight into the similar magnitude with those of
the edge weight. And 1

pri(si)
indicates that the node with higher charging priority has

smaller node weight, which is consistent with that the node pair with low moving cost
has smaller edge weight.

Since the sensor’s charging can be finished by the charger’s only one pass, we
equally divide the node weight into two parts, e.g. 1

2weight
′(si). And then we dis-

tribute the divided node weight to the weight of the node’s associated edges, i.e.,
weight ′(si,s j) = weight(si,s j)+ 1

2weight
′(si)+ 1

2weight
′(s j), which updates the edge

weight set. Then we will perform charging planning based on the transformed edge-
weighted graph G′ = (V ′,E ′,EW ′).

Phase 2: Charging Path Planning
Based on the auxiliary graph G′ = (V ′,E ′,EW ′), we perform the algorithm for TSP
Problem and the charging path pathc of the charger c can be obtained. The detailed
description is shown in Algorithm 1.

Theorem 1. The time complexity of CS-HWG Algorithm is O(n3), where n is the num-
ber of sensors.

Proof. According to the description of Algorithm 1, there are three parts as shown in
Algorithm 1, the preliminaries, Phase 1 and Phase 2. We analyze the time complexities
for these parts as follows: For the preliminaries in Lines 1–7, the charging priority
assignment has the time complexity of O(n). For Phase 1, Phase 1.1 (Heterogeneous-
weighted Graph Construction) and Phase 1.3 (Edge-weighted Graph Transformation)
both perform for all the nodes and edges, whose time consumptions are directly related
to the number of nodes and that of edges. Thus their time complexities are both O(n2).
For the node filtering (Lines 23–32) in Phase 1.2 (Charged Node Filtering), its time
complexity is O(n). Furthermore, TSP Algorithm is applied in Phase 1.2 and Phase 2,
which has a larger time complexity of O(n3) [17].

To sum up, the time complexity of CS-HWG Algorithm is O(n3), which completes
the proof. �
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Algorithm 1. CS-HWG Algorithm for CS-MEE Problem
Input: S= {s1,s2, · · · ,sn}, {E0

i |1 ≤ i ≤ n}, {C(si)|1 ≤ i ≤ n}, a setC = {c} and Emax

Output: EA= {C(si)|1 ≤ i ≤ n} and pathc = {c,si1 ,si2 , ...,sik ,c|1 ≤ i1, i2, ..., ik ≤ n}
1: Set the divergence indicator DI = �max1≤i, j≤n

E0
i

E0
j
�.

2: for ∀si ∈ S do
3: C(si) = 0;
4: Case1: If si in Charging Status, pri(si) = DI2;
5: Case2: If si in Low-Power Status, pri(si) = DI;
6: Case3: If si in Working Status, pri(si) = 1

DI ;
7: end for
8: //Phase 1: Charging Energy Assignment
9: //Phase 1.1: Heterogeneous-weighted Graph Construction
10: Set V , E, VW , EW ← /0
11: V ← S

⋃
C, E = {(si,s j)|∀si,s j ∈V and dist(si,s j) ≤ l0)}

12: for ∀si ∈V do
13: weight(si) = α · (E0

i −Ecur
i )

14: end for
15: VW = {weight(si)|∀si ∈ S}
16: for ∀(si,s j) ∈ E do
17: weight(si,s j) = β ·dist(si,s j)
18: end for
19: EW = {weight(si,s j)|∀(si,s j) ∈ E}
20: //Phase 1.2: Charged Node Filtering
21: Perform TSP Algorithm on G[{si|∀si in Charging Status}] and obtain a Hamilton Cycle

with edge weight Eres
moving

22: Emax = Emax −Eres
moving

23: Set V ′ =V , E ′ = E, EW ′ ← /0
24: while Emax > 0 do
25: For each si in Charging Status,C(si) =

pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si)//Case1

26: For each si in Low-Power Status,C(si) =
pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si)

//Case2
27: For each si in Working Status,C(si) =

pri(si)
DI2 · (E0

i −Ecur
i ), Emax = Emax −C(si) //Case3

28: end while
29: for ∀si ∈V do
30: IfC(si) = 0, V ′ =V ′ \ {si}, E ′ = E ′ \ {(si,s j)|∀s j ∈V}
31: end for
32: EA= {C(si)|∀si ∈V ′}
33: //Phase 1.3: Edge-weighted Graph Transformation
34: for ∀si ∈V ′ do
35: weight ′(si) = β ·avrdist · 1

pri(si)
· weight(si)α·E0

i
, where avrdist = ∑1≤i, j≤n dist(si,s j)

|E ′|
36: end for
37: for ∀(si,s j) ∈ E ′ do
38: weight ′(si,s j) = weight(si,s j)+ 1

2weight
′(si)+ 1

2weight
′(s j)

39: end for
40: EW ′ = {weight ′(si,s j)|∀(si,s j) ∈ E ′}
41: //Phase 2: Charging Path Planning
42: Perform TSP Algorithm on G′ = (V ′,E ′,EW ′) and obtain the charging pathc of c
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4 Simulation Results

The simulation experiments are performed in a two-dimension planar with the size of
M ∗M. On the plane, there are n sensors randomly deployed; for each sensor si, there
is a uniform parameter E0 denoting the maximum battery capacity. And si’s current
battery energy Ecur

i is valued in the range of [0, 45 ·E0] and it battery capacity E0
i is set

in [Ecur
i ,E0]. The two indictors for the sensors’ status, Elow and Emin are assigned 3

5 ·E0

and 3
10 ·E0. The moving distance limitation between any pair sensors l0 is set as 50.
For the optimization goal of MVB-GRC Problem, we evaluate the proposed algo-

rithm in terms of the energy efficiency, which is denoted as Energy Efficiency. The
four parameters, the side length of the region M, the number of sensors n, the initial
energy of the charger Emax, and the maximum energy capacity of sensors E0 are con-
sidered as the potential factors on performance of charing scheduling. And we consider
the following four groups of parameter settings and we repeat the experiment 100 times
and adopt the average values for each setting: (1) M varies from 40 to 160 by the step
of 20 with fixed n, E0 and Emax; (2) n varies from 60 to 160 by the step of 20 with fixed
M, E0 and Emax; (3) Emax varies from 2500 to 5500 by the step of 500 with fixedM, E0

and n; (4) E0 varies from 40 to 100 by the step of 20 with fixed M, n and Emax.

Fig. 1. Energy efficiency by comparing two TSP algorithms

Firstly we apply two TSP Algorithms with approximation ratios of 2 and 1.5 [17]
(denoted as 2-ratio TSP and 1.5-ratio TSP) in Charging Path Planning Phase and
evaluate their performance measure. As shown in Fig. 1, with the changes of the four
parameters, 1.5-ratio TSP outperforms 2-ratio TSP on energy efficiency. The reason
is that the former algorithm can construct a better Hamilton Cycle which is closer to
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the optimal one, i.e., 1.5-ratio TSP constructs a charging path with less length than
that generated from 2-ratio TSP. Then the scheme with less charging path length can
enhance the whole charging efficiency. Moreover with the growth ofM as shown in (a),
the energy efficiency fluctuates in the range [0.65,0.87] and gets stable whenM > 120;
with the increasing of n, Emax or E0 in (b)-(d), two algorithms both enter a smooth sta-
tus with little fluctuations on the energy efficiency. It is because that the region scale
directly influences the maximum length of charging paths, which determines the results
obtained by TSP algorithms.

Fig. 2. Energy efficiency by varing M Fig. 3. Energy efficiency by varing n

Secondly, with the advantages of 1.5-ratio TSP Algorithm, we continue to per-
form the simulations via applying it and evaluate the algorithm’s performance with the
change of four parameters.

As shown in Fig. 2, with the growth ofM, the energy efficiency presents upward ten-
dency and moderate fluctuation when Emax = 1000,2000,3000,4000. Compared with
Emax = 1000, the influence ofM on the energy efficiency becomes smaller with a larger
Emax = 4000, which shows that the region scale has little impact on the algorithm with
a larger initial energy of the charger. It can be explained by that when the initial energy
of the charger is sufficient, the charging requirements of all the sensors can be satisfied
which can keep the energy efficiency on a high level.

As shown in Fig. 3, the energy efficiency obtained by CS-HWG Algorithm remains
upward trend with the increasing of n at the fixed Emax = 1000,2000,3000,4000. Espe-
cially when n > 100, the results among different Emax enter a relative steady state
[0.80,0.95] with little fluctuations. It shows the algorithm can satisfy the charging
requirements of the majority of the sensors. The reason is that with the increasing of
network scale with a fixed region scale, the deployment density becomes higher which
is helpful to reduce the moving energy consumption; at the same time, the increased
initial energy of the charger can meet more charing requirements for the sensors.

As shown in Fig. 4, the energy efficiency fluctuates up and down with the increasing
of Emax, which is especially apparent when Emax ∈ [3500,5500] with a fixed n = 100.
The amplitude of fluctuation becomes unapparent with the growth of n, i.e., the results
when n= 200 remain in [0.87,0.93]. It can be explained by that when the network scale
gets larger, the different between each pair of sensors’ charing requirement becomes
relative smaller, which is benefit for improve the charger’s charging efficiency. Thus
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Fig. 4. Energy efficiency by varing Emax Fig. 5. Energy efficiency by varing E0

with the increased initial energy of the charger, the change of energy efficiency can
enter a smooth status.

As shown in Fig. 5, comparing the results when Emax = 1000,2000,3000,4000, the
changing of E0 has a steady impact on increasing the energy efficiency with different
Emax, i.e. the results remain [0.85,0.95] when E0 > 80. It shows that the maximum bat-
tery capacity of sensors E0 has limited influence on the performance of our algorithm. It
is because that E0 determines the maximum charging requirements for sensors, which
cannot decide the actual charging amount. The algorithm is designed to meet the most
necessary charging requirements first and perform selective fully-charged-mode charg-
ing to sensors in different status, which is for enhancing the whole energy efficiency.

Finally, we can draw the conclusion that the network scale n and the initial energy
of the charger Emax has more influence than the region scaleM and the energy capacity
of the sensors E0 in terms of the energy efficiency of the whole charging process.

5 Conclusion

In this paper, we investigate the maximum energy efficiency charing planning prob-
lem for one mobile charger in WRSNs. We formally define the problem and propose a
heuristic algorithm composed of charing energy assignment and path planning, which
is based on heterogeneous-weighted graph construction and edge-weighted graph trans-
formation. Furthermore, we apply two approximation algorithms in the charging path
phase and perform the simulation experiments to evaluate the algorithm’s performance.
In the future, we have great interest on investigating the maximum energy efficiency
charging planning problem for multiple chargers in WRSNs.
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