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Abstract. Bitcoin, as one of the most popular cryptocurrency, has
been attracting increasing attention from investors. Consequently, bit-
coin price prediction is a rising academic topic. Existing bitcoin pre-
diction works are mostly based on trivial feature engineering, that is,
manually designed features or factors from multiple areas. Feature engi-
neering not only requires tremendous human effort, but the effectiveness
of the intuitively designed features can not be guaranteed. In this paper,
we aim to mine the abundant patterns encoded in Bitcoin transactions,
and propose k-order transaction graphs to reveal patterns under different
scopes. We propose features based on a transaction graph to automat-
ically encode the patterns. The Multi-Window Prediction Framework
is proposed to train the model and make price predictions, which can
take advantage of patterns from different historical periods. We further
demonstrate that our proposed prediction method outperforms the state-
of-art methods in the literature.

Keywords: Bitcoin · Blockchain · Transaction · Machine learning

1 Introduction

Bitcoin blockchain [24]1, the first application of blockchain, has been attracting
increasing attention from various areas. Bitcoin is the cryptocurrency traded in
the Bitcoin blockchain, which is a reward to the miners for successfully appending
a block. Bitcoin can be traded with regular currency in financial markets like
many other financial products, e.g. stocks, gold and crude oil [28]. Different from
other products, bitcoin has highly volatile prices [1,5]. This provides investors
with a great opportunity to earn a fortune from the striking difference in prices.
Thus, bitcoin is becoming a popular financial asset, and attracts huge amounts
of investment [30].
1 In this paper, the terms “Bitcoin blockchain” or “Bitcoin” refer to the whole Bitcoin

blockchain system and “bitcoin” refers to the cryptocurrency.

This work is partially supported by NSF 1907472.

c© Springer Nature Switzerland AG 2021
W. Wu and H. Du (Eds.): AAIM 2021, LNCS 13153, pp. 317–328, 2021.
https://doi.org/10.1007/978-3-030-93176-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93176-6_27&domain=pdf
http://orcid.org/0000-0002-2036-291X
https://doi.org/10.1007/978-3-030-93176-6_27


318 X. Li and L. Du

Bitcoin price forecasting models are eagerly desired to provide the sugges-
tions on whether the bitcoin price will rise or fall [10,29] to help investors decide
whether and when they should buy or sell bitcoins. However, bitcoin price fore-
casting models usually require well-designed features to reveal the reason of bit-
coin price change, which is a challenging task. The basic features of blockchain
are the indexes reflecting the transaction information of Bitcoin blockchain, such
as average degree of addresses, number of new addresses and total coin amount
transferred in transactions [2]. Maesa et al. try to analyze the latent features of
Bitcoin blockchain from the perspective of users transferring graph [20]. Mallqui
et al. [21] include international economic indicators that were used to reflect the
features of the global financial market, such as S&P500 future, NASDAQ future,
and DAX index, which are features from a financial perspective. CerdaR et al. [8]
and Yao et al. [29] introduce public opinion features into bitcoin price prediction
through mining the sentiment from social media like Twitter and news articles.

Existing work has created features covering many aspects, including
blockchain network, financial market information, and even public opinions.
However it is still unclear what features or factors are useful, and how these
features impact the price of bitcoin. Manually discovering or creating the fea-
tures not only relies on heuristics but also consumes huge labour resource. In
this paper, we try to develop a bitcoin prediction model that can directly learn
features from the Bitcoin blockchain transactions without directly incorporat-
ing tedious information outside the blockchain, e.g. financial market informa-
tion, and public sentiment. Instead, if the external factors beyond the Bitcoin
blockchain, such as public sentiment or news, contribute to the bitcoin price
change, they will eventually be reflected by the changes in the transactions and
structure of the Bitcoin blockchain. In other words, if the external factors influ-
ence the action of users, the different actions taken by users will be reflected by
the changes in the transactions in the Bitcoin blockchain. In this paper, we argue
that the structure of Bitcoin blockchain encodes abundant transaction pattern
information that can interpret the factors behind the bitcoin price change.

To capture these transaction patterns, we propose a blockchain transaction
graph.

The blockchain transaction graph encodes the patterns of transactions which
reflects market trend and status. As mentioned in [4], if the input addresses of a
transaction is more than the output addresses, then the transaction is gathering
bitcoins, indicating some users are buying bitcoins. On the other hand, if the
input addresses of a transaction is less than the output addresses, then the
transaction is splitting the bitcoins, indicating some users are selling bitcoins.
Therefore by discovering these transaction patterns with a Bitcoin transaction
graph and proposed prediction framework, we can leverage valuable information
that can hardly be managed by manual feature engineering.

The main contributions of the paper can be summarized as follows:

– We propose a k-order Transaction Subgraph based on a transaction
graph, to represent the transaction feature of blockchain.

– We proposed a transaction graph based feature to encode the implicit patterns
behind the transactions, which is further fed to a novel machine learning
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based Multi-Window Prediction Framework that can effectively learn
the features of different historical periods.

– We evaluate the proposed method empirically using historical bitcoin prices
and the results demonstrate superiority over recent state-of-the art methods.

The remainder of this paper is organized as follows: In Sect. 2, we review
related recent literature. Section 3 proposes a transaction graph and describes
how the subgraph feature is extracted. Next, in Sect. 4, we propose the Multi-
Window Prediction Framework. In Sect. 5 we evaluate the proposed feature and
the prediction framework. Finally, in Sect. 6, we conclude.

2 Related Work

The key issue of bitcoin price prediction is to discover and analyze determi-
nants of bitcoin price. Various determinants have been studied including Google
Trends [16,22], Wikipedia [16], Bitcoin tweets [6,22], social media or public opin-
ions [7,8,29], and so on. Some papers consider both traditional features in the
market as well as economical features of a digital currency [3,11]. Pieters and
Vivanco [26] study the 11 bitcoin markets and present that standard financial
regulations can have a non-negligible impact on the market for Bitcoin. Both
Georgoula et al. [13] and Kristoufek [17] study the difference between long-
term and short-term impact of the determinants on bitcoin price. Kristoufek [17]
stresses that both time and frequency are crucial factors for bitcoin price dynam-
ics since the price of bitcoin evolves overtime.

The structural information of the Bitcoin blockchain has also been used to
mine determinants of the price of bitcoin. Akcora et al. [4] propose a Bitcoin
graph model, upon which chainlets is proposed to represent graph structures in
the Bitcoin.

In their further work [2], they propose occurrence matrix and amount matrix
to encode the topological features of chainlets. In this paper, we also adopt the
concept of occurrence matrix to encode the topological features. However, we
design a different graph representation model to reveal the topological features
of the Bitcoin blockchain.

There are also several theoretical [18,19,27] and empirical studies [5,15,23]
that have looked at Bitcoin transactions focusing on the volume-return causality
in the Bitcoin market. These studies focus on trading volumes or number of
unique Bitcoin transactions and employ regression techniques. In this paper, we
take our analyses further and extract patterns from the Bitcoin transactions
using graph models.

Various machine learning methods can be adopted to learn the patterns from
the features and forecast the price of bitcoin [10,31]. Felizardo et al. [9,12] com-
pare several popular machine learning methods adopted in the bitcoin price
prediction task. Methods include using a Hidden Markov Models to tackle
the volatility of cryptocurrencies and predicting future movements with Long
Short Term Memory networks (LSTM) [14] and using hybrid methods between
AutoRegressive Integrated Moving Average (ARIMA) and machine learning [25].
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Fig. 1. A simple transaction graph

3 Transaction Graph and Subgraph Occurrence Pattern

In order to mine the blockchain transaction features, we define transaction
graph to extract the blockchain transaction information.

Definition 1. (Transaction Graph): A transaction graph is a directed graph
G = (A, T,E), where A is the set of addresses in the blockchain, T is the set
of transactions in the blockchain, and E is the set of direct links from ai to tk,
indicating ai is one of the inputs of tk, or from tk to aj, indicating aj is one of
the outputs of tk, where ai, aj ∈ A and tk ∈ T .

Figure 1 presents an example of a transaction graph, which contains 8
addresses and 4 transactions.

3.1 k-Order Transaction Subgraph

To specify characteristics of each transaction in the transaction graph, we define
the k-order transaction subgraph of each transaction. The k-order transaction
subgraph of a transaction ti is a graph Gk

ti that contains only ti and the trans-
actions that spend the output of ti in the next k − 1 steps, along with the corre-
sponding addresses that connect to these transactions. The formal definition is
given as Definition 2.

Definition 2. (K-order transaction subgraph): The K-order transaction sub-
graph of a transaction ti is a graph Gk

ti = (Ak, T k, Ek), where T k = {tj | ∃ an ∈
Ak−1, (an, tj) ∈ E and ∃(tl, an) ∈ Ek−1 for tl ∈ T k−1}, Ak = {an|an ∈ Ak−1

or (tj , an) ∈ E where tj ∈ T k}. Specially, if k = 1, G1
ti = (A1, T 1, E1), where

A1 = {an|(an, ti) ∈ E or (ti, an) ∈ E}, T 1 = {ti} and E1 = {(an, ti) or (ti, an)
|an ∈ A1}.

If k = 1, then the k-order transaction subgraph of ti contains only ti along
with its input addresses and output addresses. When k increases, the k order
transaction subgraph will trace further along the bitcoin flow output by transac-
tion ti. Figure 2(a) and 2(b) shows the 1-order and 2-order transaction subgraph
of transaction t1 in Fig. 1, respectively.

The k-order transaction subgraphs have different patterns. Here we consider
different patterns as different numbers of inputs and outputs addresses of the
k-order transaction subgraphs.
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Fig. 2. The 1 order nd 2-order transaction subgraph of t1 in Fig. 1

The input addresses of a k-order transaction subgraph Gk
ti are the addresses

that input to the first transaction in Gk
ti . The output addresses of Gk

ti are the
addresses that accepts the outputs of the last transactions in Gk

ti . The input and
output addresses are formally defined in Definition 3.

Definition 3. (Input and Output addresses of K-order transaction subgraph):
The input and output addresses of K-order transaction subgraph Gk

ti is IGk
ti

and

OGk
ti
, respectively. IGk

ti
= {an|∃(an, tj) ∈ Ek, tj ∈ T k and ∀tk ∈ T k, (tk, an) /∈

Ek}. OGk
ti

= {an|∃(tk, an) ∈ Ek, tk ∈ T k and ∀tj ∈ T k, (an, tj) /∈ Ek}.

In Fig. 2(a), the addresses a1 and a2 are the input addresses of G1
t1 , and

the address a5 is the output address of G1
t1 . For higher order transaction sub-

graphs, the input and output addresses may be more complicated. For example,
in Fig. 2(b), the input addresses of G2

t1 are {a1, a2} = IG2
t1

, and the output
addresses are {a8} = OG2

t1
.

Based on the concept of IGk
ti

and OGk
ti

, we now further define the pattern of
a transaction subgraph. The pattern of a k-order transaction graph of transaction
ti is denoted as Gk

(m,n) = {Gk
ti ||IGk

ti
| = m, |OGk

ti
| = n}, where m and n are the

number of input addresses and output addresses of Gk
ti respectively.

For a given transaction graph generated from a blockchain transaction record
during a specific period T , we can obtain a k order transaction subgraph Gk

ti
of each transaction ti ∈ T . The obtained transaction subgraphs may belong to
different patterns. For the example in Fig. 2, G2

t1 belongs to the pattern G2
(2,1),

while G2
t2 belongs to the pattern G2

(1,1).
We believe these patterns contain valuable information revealing the charac-

teristics of each corresponding blockchain transaction in a period. In addition,
the patterns obtained under different order k can reveal different levels of latent
information. The benefit of denoting the pattern based on the number of input
addresses and out addresses is that the patterns can be easily encoded into
matrices, and therefore can be adopted as the features of the current transac-
tion graph.

By summarizing the patterns of all k-order transaction graph Gk
ti of every

transaction ti in a transaction graph G, two key characteristics can be obtained
1) what kinds of patterns occur in the transaction graph, and 2) how many times
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these patterns occur. We extend the concept of occurrence matrix in literature [2]
to a k order pattern occurrence matrix, denoted as OCk, where the entry of OCk

is OCk
(m,n) = |Gk

(m,n)|. The entry of pattern occurrence matrix OCk
(m,n) denotes

the number of k-order transaction graphs that belong to the pattern Gk
(m,n).

Finally we concatenate OCk for k = 1, 2, 3, .., s as the feature v of the transac-
tion graph G we obtain from the blockchain transaction record. Now the Bitcoin
Price Prediction problem can be specified in detail: use the feature vector v that
is calculated from the transaction graph based on Bitcoin historical data in time
period [t−i, t], to predict bitcoin price at some future time t+h, Pt+h. Formally,
we define the price prediction task as Definition 4.

Definition 4. (Bitcoin Price Prediction): Given time t′ = t+Δt, where Δt ≥ 0,
and Bitcoin historical data in time period [t− s, t], where s ∈ N+. Let Pt denote
the price of bitcoin at time t. the bitcoin price prediction problem is to predict
the price at time t′, e.g. Pt′ .

4 Multi-window Prediction Framework

Transactions in the blockchain are time sequential, meaning the blockchain may
shows different patterns at different periods of time. How much the future price
is influenced by historical patterns and how far back we should look to discover
these patterns are empirical questions. To answer these questions more system-
atically, we propose the Multi-Window Prediction Framework. This framework
uses the features from different lengths of historical data to construct different
submodels and incorporates the results from every submodel to form a final
result. By taking advantage of all the submodels, this framework can boost the
accuracy of our predictions.

Figure 3 illustrates the Multi−Window Prediction Framework. M1 to Ms

are s submodels that are trained separately on different windows of time with
length s. For example, M1 is the model trained by the features extracted from
the past 1 day, and M2 is the model trained by the features extracted from the
past 2 days. When making price forecasts for a specific day t′ = t+Δt (Δt ≥ 0),

Fig. 3. Overview of the Multi-window Prediction Framework
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Fig. 4. Illustration of settings for submodel 2 (M2) to predict Pt+1

each submodel will first output its individual prediction. The integrator will then
combine the results into one final result.

The accuracy of the final result depends on the performance of each sub-
model. Next, we describe how each model is trained and makes future price pre-
dictions. In this paper, we predict the daily end price of bitcoin. The end price
of day t′ is denoted as Pt′ . After extracting features from a historical period,
say [t − s, t], it is natural to directly predict Pt′ . However, it is more reasonable
to predict the price difference between Pt′ and Pt−s, denoted as ΔP[t−s,t′], and
then derive the predicted Pt as P̂t = Pt−s + ˆΔP[t−s,t′]. The reason is twofold: 1)
we know the historical price Pt−s, and it should be considered to improve the
prediction; 2) whatever features extracted from [t−s, t] represents the character-
istics only during [t−s, t] in the bitcoin market, and these are the characteristics
that bring changes to the price. Thus, it is more reasonable to use the features to
interpret the price change rather than the exact price. Therefore, in this paper,
we construct data sample pairs as (x, y), where x is the feature vector extracted
from a historical period [t−s, t], and y = ΔP[t−s,t′] = Pt′ −Pt−s. Each submodel
will be retrained if it aims to predict a different future time. We denote the dis-
tance from the future time to be predicted as h = t′ − (t−s). Figure 4 illustrates
an example of the parameters setting for submodels making predictions.

The integrator will combine the results from each submodel with different
weights, which can be a simple linear function as follows:

P̂t′ = r1 ∗ P̂t′
1

+ r2 ∗ P̂t′
2

+ ... + rs ∗ P̂t′
s

(1)

where r1 + r2 + ... + rs = 1.
In this paper, we elaborately design the weights. Let Wi = [r1, r2, r3, ..., ri].

Specially, if the historical window size is 1, which indicates that we only employ
one model to make the prediction, W1 = [r1] = [1.0]. As the historical window
size increases, i > 1, Wi is defined as Eq. 2:

Wi+1[k] = Wi[k] (k = 1, ..., i − 1)
Wi+1[i] = Wi[i] ∗ α

Wi+1[i + 1] = Wi[i] ∗ (1 − α)
(2)
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where α controls the speed of decay of weights corresponding to results from
submodels with data further back in history. Equation 2 maintains the property
that

∑
rj∈Wi

rj = 1 for i > 0.

5 Experimental Results

In this section, we present the evaluation of our proposed transaction graph
based blockchain feature and Multi-Window Prediction Framework.

5.1 Data Preparation

To conduct the bitcoin price prediction task, we collect Bitcoin blockchain his-
torical data and bitcoin price historical data. The Bitcoin blockchain data is
downloaded from Google Bigquery public dataset crypto Bitcoin2 whose data is
exported using Bitcoin etl tool3. The bitcoin price data is collected from Coin-
desk4.

We select two historical periods for the experiments.

– Interval 1: From August 19th, 2013 to July 19th, 2016. The timestamps are
divided daily. This period contains 1065 days, the first 80% days are used to
train the model and the latter 20% is reserved for testing.

– Interval 2: From April 1st, 2013 to April 1st, 2017. The timestamps are
divided daily. This period contains 1461 days, the first 70% days are used to
train the model and the latter 30% is reserved for testing.

Interval 1 and Interval 2 are identical to the datasets used in the litera-
ture [21], which will be used as a benchmark in the next sections. In this paper,
we predict bitcoin daily closing price during the above periods.

For the evaluation metric, we adopt Mean Absolute Percentage Error
(MAPE) to show the error between predicted prices and real prices. The MAPE
is defined as MAPE = 1

N

∑N
i=1

|p̂i−pi|
pi

, where p̂i is the predicted bitcoin price,
while pi is the real realized price.

5.2 Performance of Difference Submodels

Table 1 shows each submodel, M1 to M4, where each submodel adopts the same
training strategy and machine learning prediction model. They only differ by
the length of the historical window of time used when extracting the features.
s is the length of the window of time, where s = 1 means the model extracts
features from the past 1 day. h is the future time that the model aims to pre-
dict, where h = 1 means the model predicts the price the next day. Due space

2 Dataset ID is bigquery-public-data: crypto Bitcoin at https://cloud.google.com/
bigquery.

3 https://github.com/blockchain-etl/Bitcoin-etl.
4 https://www.coindesk.com/.

https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://github.com/blockchain-etl/Bitcoin-etl
https://www.coindesk.com/
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Table 1. MAPE of Submodels (SVM Prediction) for Predicting Future Price

Submodels Interval 1 Interval 2 Year 2017

h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5

M1 (s = 1) 1.75% 2.59% 3.15% 3.77% 4.31% 1.74% 2.57% 3.21% 3.78% 4.29% 4.73% 7.09% 8.36% 10.30% 12.20%

M2 (s = 2) – 2.61% 3.16% 3.76% 4.29% – 2.58% 3.20% 3.78% 4.29% – 7.01% 8.36% 10.05% 11.90%

M3 (s = 3) – – 3.17% 3.76% 4.29% – – 3.20% 3.76% 4.27% – – 8.24% 9.91% 11.70%

M4 (s = 4) – – – 3.75% 4.29% – – – 3.78% 4.28% – – – 9.85% 11.60%

constraints, we only show the results where each submodel adopts the Support
Vector Machine (SVM) algorithm, which is the best in our record. We find that
including more historical information in our models does not necessarily result
in better performance in terms of MAPE. For example, M2 at h = 2 obtains
a worse prediction than M1 at Interval 1 and Interval 2, despite the fact that
M2 considers one further day back than M1. One can identify additional similar
cases in Table 1. Therefore, we expect to achieve a higher MAPE by taking into
consideration all the different submodels.

5.3 Performance of Combined Model

Figure 5 shows the effects of combining the submodels to produce the final pre-
diction. M1 means only submodel M1 is adopted, M1 ∼ M2 means the results
from both submodels M1 and M2 were both used, M1 ∼ M3 means the results
from submodels M1, M2 and M3 were used, and so on. When α > 0.7 in Interval
1, and α > 0.75 in Interval 2, we can see the combined models outperform the
single model (only M1). When α = 0.85 the Multi-Window Prediction Frame-
work can produce the most accurate prediction with the lowest MAPE value.

Table 2 shows the specific MAPE values when α = 0.85 and h = 1. We can
observe that M1 ∼ M4 produces the best results. Therefore we can conclude that
4-day historical information seems to be sufficient for predicting bitcoin price
with our proposed Multi-Window Prediction Framework. The results reflect the
high volatility of bitcoin price where the current price does not relate much to

Fig. 5. MAPE of Multi-Window Prediction Framework when combining different sub-
models and alpha in Interval 1 and Interval 2 (h = 1), all using SVM
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Table 2. MAPE of Multi-Window Prediction Framework when combining different
submodels (SVM, α = 0.85, h = 1)

Submodels incorporated Interval 1 Interval 2

M1 1.75% 1.74%

M1+M2 1.70% 1.73%

M1+M2+M3 1.70% 1.72%

M1+M2+M3+M4 1.69% 1.72%

M1+M2+M3+M4+M5 1.70% 1.72%

Mallquietal. − SV M [21] 1.91% 1.81%

historical prices too far back and, instead, is more highly influenced by very
recent characteristics in the Bitcoin blockchain.

5.4 Comparison with Benchmark

Mallqui et al. [21] study a similar bitcoin price prediction task. Mallqui et al.
utilize several machine learning methods to forecast bitcoin price based on the
proposed features including historical price, volume of trades and financial indi-
cators. Since the SVM model performs the best in [21], we adopt the SVM
prediction model for comparison, denoted as Mallquietal. − SV M . The result
of Mallquietal. − SV M on both Interval 1 and Interval 2 are shown in Table 2.
Our proposed combined model M1 ∼ M4 outperforms Mallquietal. − SV M .

6 Conclusion

In this paper, we propose a transaction graph based machine learning method to
forecast the price of bitcoin. The k-order transaction graphs of the transactions
are proposed to reveal the transaction patterns in the Bitcoin blockchain. The
occurrence matrix is then defined to encode the information patterns and we
further represent them as features of the Bitcoin blockchain. We also propose
the Multi-Window prediction framework to learn the transaction patterns from
multiple blockchain historical periods. Results of comparative experiments show
that the method we propose outperforms recent state-of-art methods, further
demonstrating the effectiveness of our method.
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