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ABSTRACT Influence maximization (IM) has been widely studied in recent years. Given fixed number
of seed users and certain diffusion models, the IM problem aims to select proper seed users in a social
networks such that they can achieve the maximal spread of influence. Most previous work assumes that there
are only positive relationships between users, and thus users spread influence positively. However, negative
relationships also universally exist in various social networks and are complementary to positive relationships
in information diffusion. In this paper, the influence maximization problem is addressed in signed social net-
works that contain both positive and negative relationships. We propose a novel diffusion model called LT-S
and two influence spread functions. The proposed LT-S model extends the classical linear threshold model
with opinion formation that incorporates both positive and negative opinions and simulates information
diffusion in real-world social networks. The influence spread functions under the LT-S model are neither
monotone nor submodular which bring challenges to maximization. The RLP algorithm is proposed to
tackle the issue, which is improved from R-Greedy algorithm by incorporating two proposed accelerating
techniques, the live-edge based and propagation-path based techniques. The results of the extensive experi-
ments on public real signed social network datasets demonstrate that our algorithm outperforms the baseline
algorithms in terms of both efficiency and effectiveness.

INDEX TERMS Social network services, modeling, greedy algorithms, influence maximization, opinion
formation.

I. INTRODUCTION
The popularity of social networking sites has rapidly
increased over the past few years. Social networks such as
Facebook, Twitter and Epinions provide many kinds of ser-
vices and benefits to their users like helping them to connect
with new people, share opinions with like-minded people and
stay in touch with old friends and colleagues. The interac-
tions among individuals make these social networks become
important form for spreading information, ideas, opinions
and influence, which provides great opportunities and chal-
lenges for large-scale viral marketing campaigns.

The associate editor coordinating the review of this manuscript and
approving it for publication was Burak Kantarci.

InfluenceMaximization (IM) is one of the most interesting
and important problems in viral marketing and has attracted
much research interest in recent years. The IM problem
expects to achieve commercial return as large as possible
with the least cost of marketing under the word-of-mouth
diffusion. In detail, IM is the problem of choosing a small
set of influential users in a social network, initially targeted
as seed users, so as to maximize their spread of influence
after the diffusion of opinions in the network. Consider a
company wants to promote a new product with limit budgets.
The company can select a small set seed users by offering
the discount or sample to make these users accept the prod-
uct. These seed users then recommend the product to their
friends and their friends continue to promote the product.
The company wants to find the best seed users who make the
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final acceptance of the new product maximized with the given
budget.

Dominigos and Richardson [1] were the first to study influ-
ence maximization in probabilistic settings. Kempe et al. [2]
formulated the influence maximization as a directed opti-
mization problem and proposed two basic influence diffusion
models, independent cascade (IC) and linear threshold (LT).
Both of the two models consider the social network as a
directed graph, in which users are represented as vertices
and directed edges reflect the social relationships between
users. A user can be either active (an adopter of the prod-
uct) or inactive. The initial seed users are active, and once a
user is activated, he will stay active. In the IC model, active
users will try only once to activate their inactive neighbors
according to given probabilities. In the LT model, each user
has a threshold and will become active when the sum of
incoming influence from his active neighbors exceeds that
threshold. They propose a greedy algorithm to solve the
IM problem based on the monotonicity and submodularity of
the influence spread function under both IC and LT models.

Much effort [3]–[6] has been devoted to solving the
IM problem and additional influence diffusion
models [7]–[10] have been developed. However, previous
work only considers positive relationships, ignoring the
fact that negative relationships also exist in real social net-
works and have effects on influence diffusion. For exam-
ple, Slashdot1 (a news discussion website) allows users to
annotate others to be either ‘‘friends’’ or ‘‘foes’’. Social
networks having a sign, positive or negative, associated
with edges are called signed social networks [11], [12].
In signed networks, the sign of each edge characterizes
whether the corresponding individuals are ‘‘friends’’ (posi-
tive links) or ‘‘enemies’’ (negative links). In previous studies,
two nodes sharing a positive link are supposed to hold the
same opinions [2]–[4], [10], as people mostly trust their
friends and embrace the same opinions. In contrast, shar-
ing a negative link means two nodes hold the opposite
opinions [11]–[14].

Most previously proposed models for the IM problems
assume that active users can only generate and uniformly
express positive opinions to their neighbors. However, in real-
ity, users are possible to hold negative opinions, and express
their opinion nonuniformly. Chen et al. [8] proposed a new
model called IC-N by extending the IC model with neg-
ative opinions. In IC-N, a parameter q (the same for all
users) is incorporated into the spread of negative opinions,
which is too primitive and can not always represent real-
world behaviors. Besides, there are more problems need to
be addressed in information propagation. For example, a girl
bought a handbag and she likes it, then she recommends it
to her best friends. She also did not want her foes to buy
handbags of the same style, so she said bad words about the
handbag to her foes. Some of her foes may trust her expressed
opinion, then this relationship causes negative influence to

1http://slashdot.org/

the handbag, but some other foes may distrust her expressed
opinion, although this is a negative relationship, it still causes
positive influence to the handbag. People sometimes do not
express their true opinions to enemies, and reversely, people
also do not always trust the information expressed by their
enemies. These phenomenons are very common in social
networks.

Much work has also been developed in the sociology
and economics literatures on modeling opinion dynamics in
social networks. Some models [15]–[17] incorporate both
innate opinions and expressed opinions. Innate opinions are
fixed for a user representing user’s personal preference and
history. Expressed opinions, on the other hand, are the opin-
ions that users finally spread after being influenced by both
their own opinions and their neighbors’ opinions. From the
aspects of computer science, however, no related work has
been done to combine opinion formation and its propagation
into a signed social network.

In this article, we propose a novel influence diffusion
model by extending the classic Linear Threshold model to
Signed networks, which we call the LT-S diffusion model.
The status of each user in LT-S model can be either in
active or inactive. A user will become active if the influence
from his neighbors, both ‘‘friends’’ and ‘‘enemies’’, achieves
his threshold. If a user is active, he will spread his opinion to
his neighbors by expressing the expressed opinion. In addi-
tion, users have innate opinion which is fixed and originally
generated according to users’ own preference and history. The
expressed opinion of an active user is the result of the linear
combination of his own innate opinion and all the expressed
opinions spread from his active neighbors. In LT-S model,
a conformity αu of user u is associated with each user, which
reflects the importance of the user’s innate opinion compared
to the expressed opinions coming from active neighbors.
We adopt the concept of conformity [16], [18] as a weighted
parameter in the above convex combination. A high confor-
mity indicates the user has an expressed opinion that is highly
dominated by the expressed opinions of his neighbors, while
a low conformity indicates that the user is more insistent to
his own innate opinion. In the process of spreading opinions,
the expresser has consistency to his opinion, where consis-
tency will be 1 if he is expressing his true opinion and will
be −1 if he is expressing opposite opinion. The accepter
has trust to the received opinion, where trust will be 1 for
trusting the received opinion, or -1 for distrusting the received
opinion. The difference of LT-S compared to the models pro-
posed in [14] and [19] is obvious. Both Li et al. [14] and this
article study influence diffusion in signed networks. Li et al.
extend the classic voter model to signed networks, whereas
LT-S is based on the linear threshold model. In addition
Zhang et al. [19] propose an opinion-based cascading model,
which takes individual opinions in account, but ignore the
negative relationships between users.

Based on the LT-Smodel, we formulate the InfluenceMax-
imization (IM) problem in signed social networks and prove
the problem NP-hard. The traditional IM problem simply
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focuses onmaximizing the total number of active users, in this
article we propose two different influence spread functions
under the LT-S model which have two different focuses. The
first is to maximize only positive opinions of all activated
users, and the other is to maximize the overall opinions of all
activated users. We prove that both the two influence spread
functions are neithermonotone nor submodular, which causes
the classical greedy algorithm [2] not applicable for the maxi-
mization. Therefore the R-Greedy [9] algorithm is adopted in
this article to solve the IM problem. In this article, we propose
the R-Greedy with Live-edge and Propagation-path (RLP),
which is improved from classic R-Greedy algorithm with
the two accelerating techniques. Extensive experiments con-
ducted on real signed social network datasets demonstrate
that the RLP algorithm can achieve competitive high influ-
ence spread with much less execution time comparing with
the baseline algorithms.

The main contributions of this article are summarized as
follows.
• We formulate the influence maximization problem in
signed social networks and propose a new model called
LT-S by extending the classical linear threshold (LT)
model. In the LT-S model, we propose two influence
spread functions, positive influence spread function and
all influence spread function, which are more effective
for simulating the information diffusion in real-world
social networks.

• We prove the influence maximization problem in
signed social networks under the proposed LT-S model
is NP-hard and the two proposed influence spread
functions under LT-S model are non-monotone and
non-submodular.

• We utilize the R-Greedy algorithm to solve the influ-
ence maximization problem in signed social networks.
However, the R-Greedy algorithm using Monte-Carlo
simulation is very time-consuming. To improve the effi-
ciency of the original algorithm, we propose a new
algorithm called RLP (R-Greedy with Live-edge and
Propagation-path), which combines two accelerating
techniques, live edges and propagation paths, with the
original R-Greedy algorithm.

• We evaluate the performance of RLP algorithm on pub-
lic real world signed social networks, and conduct exten-
sive experiments on real signed social network datasets.
The experimental results demonstrate that our algorithm
outperforms the baseline algorithms in terms of effi-
ciency and effectiveness.

The remainder of this article is organized as follows.
In Section II we present the LT-S model and the formal prob-
lem definition. Section III introduces the R-Greedy algorithm
and our optimized form, RLP. In Section IV we describe our
experiments and analyze the experimental results. Related
work is reviewed in Section V. Finally, Section VI offers
concluding remarks.

The preliminary version of this article was presented
at ‘‘the 16th International Conference of Web Information

Systems Engineering (WISE 2015)’’ [20]. We extend the
following contents in this article. In Section I, we add
supplementary backgrounds and explanation of the infor-
mation maximization problem in signed social networks.
In Subsection II-A, we deeply describe why LT-S model can
handle complex interaction of negative relationship in real
social networks. In Subsection II-B, considering real appli-
cation of influence maximization, we propose another influ-
ence spread function, called ‘‘all influence spread function’’,
which examines the summation of all opinions of active
users. And the proof of the property of non-monotone and
non-submodular is modified in Subsection II-C to be more
logical and clear. In Section III, the proposed algorithm is
explained more extensively.We extend abundant experiments
in Section IV. We introduce an additional dataset, Wikipedia,
and compare the statistical properties of all three datasets
in Table 2. In Subsection IV-B, we conduct experiments on
all three datasets with two influence spread functions and
two weight assignment metrics to make fully comparison of
six algorithms. We also make additional discussions about
the difference between two influence spread functions and
how the proposed LT-S model performs under non-signed
social networks in Subsection IV-C.1 and Subsection IV-C.2,
respectively. Section V is extended into four parts to detail the
related work, which contains additional introduction to diffu-
sion models, signed social networks and opinion formation.

II. PROPOSED FRAMEWORK
A. PRELIMINARIES
In this article, a signed social networks is described as a
weighted, directed graph, G = (V ,E,W ,R), where V is the
set of nodes representing users and E is the set of directed
edges representing relationships between users. The notation
W is the influence weight defined by the function W : E ←
[0, 1], the weight wu,v associated with an edge (u, v) ∈ E
specifies the influence weight of node u when expressing
opinions to influence v. For any (u, v) /∈ E , wu,v = 0,
and for any node, the sum of incoming edge weights is no
greater than 1,

∑
u∈V wu,v ≤ 1. The notation R is the matrix

specifying the signed relationship influences. ru,v is derived
from consistency and trust of edge (u, v), which is defined
as: ru,v = consu,v · trustu,v. Notation consu,v ∈ {−1, 1}
is the consistency when u express his opinion to v, and
trustu,v ∈ {−1, 1} denotes if v trust the opinion expressed
by u. If ru,v = +1, then the relationship from node u to
v causes positive influence; if ru,v = −1, the relationship
from node u to v causes negative influence. If there is no
relationship from node u to v, then ru,v = 0. Note negative
relationships can also cause positive influence. A illustration
of a simple signed social network between 5 people is pre-
sented in Figure 1.

In the LT model, the status of users can be either
active or inactive. Initially, all users are in inactive status
and once a user been activated, it will remain active for-
ever. Besides, a threshold θu is uniformly assigned to each
user u at random in the range [0, 1]. The diffusion process
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FIGURE 1. An example signed social network with influence weight.
Edges are labeled with their influence weight, ‘+’ (green) denotes
positive influence, and ‘−’ (orange) denotes negative influence.

TABLE 1. Notations in this article.

proceeds in discrete time steps. At the initial step 0, users
in the seed set S ⊆ V are firstly activated and all other
users are in inactive status. At some later step t , the user u
will be activated if and only if the total weight of their
active neighbors exceeds his threshold θu. Table 1 shows the
notations in this article.

B. LT-S MODEL
Considering the opinion formation process in signed net-
works, we extend the LT model to LT-S in this article.
In social networks, the opinions of an individual are often
influenced by other people, like friends, neighbors, through
social interactions between them. Thus, we introduce opin-
ion formation into LT-S model and distinguish the innate
opinion and expressed opinion of users. In LT-S model, each
user, whether in active status or not, has an innate opinion
(reflecting their preference or history) that is fixed and not
amenable to external influences during the opinion diffusion.
Users who are activated by their neighbors will generate
an expressed opinion, which is expressed to their inactive
neighbors differently according to different influence types
(ru,v) and different influence weights (wu,v). For example,
in Figure 2, Bob and Alice are in active status while Tom and
Mike are inactive. Bob and Alice express their opinions about
a movie to their neighbor Tom and Mike. Although Tom and

FIGURE 2. An example of opinion formation. The active users (Bob and
Alice) are colored red, and the inactive user (Tom and Mike) are colored
yellow.

Mike have not been activated, they have an innate opinion
about movies based on their own preference and history.

In LT-S, we denote the innate opinion and expressed opin-
ion of user u are as zu and yu respectively. The opinion is
encoded as a real quantity, zu ∈ [−1, 1] and yu ∈ [−1, 1],
where zu > 0 (zu < 0) and yu > 0 (yu < 0) indicate
that user u holds a positive (negative) innate opinion and a
positive (negative) expressed opinion about the product or
information.

The LT-S model specifies the process of information dif-
fusion in signed network as follows.The process is executed
in discrete steps, k = 0, 1, 2, . . ., where Ak denotes the set
of users activated at step k . At initial step t = 0, a seed set
S ⊆ V is activated (A0 = S) and each user in S has a positive
expressed opinion valued constant 1. At any later step t > 0,
all active users try to activate their inactive neighbors, and
a user u will be activated if and only if the total weight of
his active neighbors (both friends and enemies) exceeds his
threshold θu, that is

∑
v∈∪0≤i≤(t−1)Ai wv,u ≥ θu.

After a user be activated at a certain step t , his expressed
opinion will be formed. The expressed opinion of a user
depends on both his innate opinion and the expressed opin-
ions of active neighbors. The expressed opinion of a user u is
calculated by (1).

yu = (1− αu) · zu + αu ·
∑

v∈∪0≤i≤(t−1)Ai

yv · wv,u · rv,u (1)

In (1) we define yu, the expressed opinion of u, as the
sum of its innate opinion zu and all the weighted incoming
expressed opinion from its active neighbor. αu ∈ [0, 1] is the
conformity of u, which indicates how much u is influenced
by others rather than its own opinion. A larger value of
conformity αu represents that the user u is more influenced
by his neighbors rather than his own experience. More specif-
ically,large αu will cause user u form expressed opinion that
more influenced by the expressed opinions of his neighbor,
and a low αu will have the opposite effect. The user’s social
actions will help decide the values of their innate opinion
and conformity. In real application, we can use the fraction
of a user’s tweet and retweet frequency as a proxy for con-
formity value and obtain the innate opinion through opinion
mining [21] of recent tweets on Twitter or posts on Facebook.

When an active user forms an expressed opinion, his
expressed opinion will be propagated to inactive neighbors

68840 VOLUME 7, 2019



W. Liang et al.: Influence Maximization in Signed Social Networks With Opinion Formation

(possibly causing their activation). The influence propagation
process terminates at step k when Ak = ∅.
Let σ (S) denote the final influence spread of seed set S.

In this article, we give two definitions of σ (S). In a practical
situation, a company wants to promote a new product in the
online signed social network. With a limit budget, the com-
pany expects to select a small number of initial seed users by
offering the discounts or samples to make these users as the
first adoption users. These seed users recommend the product
to their neighbors and their activated neighbors continue the
propagation. The company may expect the campaign has
the maximal influence in two ways. One is that, in final
active users, the overall opinions (include both positive and
negative) is maximized, the other is that the positive opinion
is maximized. We give the definitions of these two kinds
of σ (S) as bellow.
• σ (S)a denotes the sum of all expressed opinions of all
users activated by S, σ (S)a =

∑
v∈∪i≥0Ai yv;

• σ (S)p denotes the sum of positive expressed opinions
of all users activated by S, σ (S)p =

∑
v∈∪i≥0Ai yv

(if yv > 0).
σ (S) is called the influence spread of seed set S, and

σ (·) is called the influence spread function. Specially,
σ (·)a denotes the all influence spread function and
σ (·)p denotes the positive influence spread function for
abbreviation.

C. PROBLEM DEFINITION AND PROPERTIES
The influence maximization problem in signed networks is
formally defined based on the proposed LT-S model in this
section, considering the process of opinion formation and
both positive and negative influence types of relationships.
Definition 1 (Influence Maximization Problem): Given

a signed social network G(V ,E,W ,R) and a parameter
K (K < |V |), the influence maximization problem in a
signed network is to find a seed set of users S ⊆ V
(|S| = K ), such that by activating these users with pos-
itive opinions, σ (S) is maximized under the LT-S model,
i.e., S =argmaxS⊆V , |S|=Kσ (S).
Theorem 1: The influence maximization problem in signed

networks under LT-S model is NP-hard.
Proof: We can prove Theorem II-C by considering a

specified instance of the problem. If each node v has innate
opinion zv = 0 and conformity αv = 1, and the expressed
opinions of all users in active status are uniformly 1 and the
edges are all signed as positive influence. Then the problem
in this article to maximize the positive expressed opinions is
equivalent to the classical influence maximization problem,
which have been proved to be NP-hard by literature [2]. �
Theorem 2: The influence spread function σ (·) under the

LT-S model is non-monotone and non-submodular.
A set function f : 2V → R, from sets to reals, is monotone

if f (S) ≤ f (T ) for all S ⊆ T . The function f is submodular
if f (S ∪ {w}) − f (S) ≥ f (T ∪ {w}) − f (T ) for all S ⊆ T ,
w ∈ V and w /∈ T . In contrast to the classical IM problem,
the influence spread function under LT-S is non-monotone

and non-submodular. To prove Theorem 2, we only need to
present counter examples for proving non-monotonicity and
non-submodularity respectively. Therefore, we first specify
Figure 1 with an instance. The innate opinion of all users
is fixed at 0.2, the influence threshold is set to 0.3, and
conformity is set to 0.9. We then prove Theorem 2 by proving
the situation of σ (·)a and σ (·)p respectively.
• The all influence spread function σ (·)a is non-monotone
and non-submodular.
Proof: Non-monotonicity. Suppose that S1 = {V1},
S2 = {V1,V0}, S3 = {V1,V0,V3}, then σ (S1) = 2.99,
σ (S2) = 2.78, σ (S3) = 3.85. As σ (S3) > σ (S1) >
σ (S2), so σ (S) is non-monotone.
Non-submodularity. Suppose that S1 = {V1}, S2 =
{V1,V3}, then σ (S1 ∪ {V0}) − σ (S1) = −0.21, and
σ (S2 ∪ {V0}) − σ (S2) = 0.39. Because S1 ⊂ S2 and
σ (S1 ∪ {V0}) − σ (S1) < σ (S2 ∪ {V0}) − σ (S2), σ (S) is
non-submodular. �

• The positive influence spread function σ (·)p is non-
monotone and non-submodular.
Proof: Non-monotonicity. Suppose that S1 = {V1},
S2 = {V1,V0}, S3 = {V1,V0,V3}, then σ (S1) = 2.99,
σ (S2) = 2.92, σ (S3) = 3.92. As σ (S3) > σ (S1) >
σ (S2), so σ (S) is non-monotone.
Non-submodularity. Suppose that S1 = {V1}, S2 =
{V1,V3}, then σ (S1 ∪ {V0}) − σ (S1) = −0.07, and
σ (S2 ∪ {V0}) − σ (S2) = 0.46. Because S1 ⊂ S2 and
σ (S1 ∪ {V0}) − σ (S1) < σ (S2 ∪ {V0}) − σ (S2), σ (S) is
non-submodular. �

III. PROPOSED ALGORITHM
A. R-GREEDY ALGORITHM
As mentioned in Section I, the traditional greedy algorithm
proposed by Kempe et al. [2] is inapplicable for the influ-
ence maximization problem in this article, due to the non-
monotonicity and non-submodularity of the influence spread
function σ (·) under LT-S. Some investigation has been made
for the influence functions that are submodular but non-
monotone [22], [23], but there is relatively little work pro-
posed to maximizing a function which is both non-monotone
and non-submodular. In [9], Feng et al. proposed a restricted
greedy (R-Greedy) algorithm to solve the problem.
The core idea of the R-Greedy algorithm is to select the

first K nodes with maximal marginal influence, and then
choose the set of seed nodes that have the largest influ-
ence spread. Algorithm 1 illustrates the main framework of
R-Greedy algorithm, in which Sk denotes the set of selected
seeds until round k , sk is a single selected seed node at
round k , and Inf uk denotes the influence after adding u to the
selected seed set Sk−1. The queue Qk is used in Algorithm 1
to store the nodes estimated in the round k and the elements
in Qk are in the form of (u, Inf uk ). The dynamic pruning
optimization is used in R-Greedy to skip the nodes whose
influence is smaller than maxMargin (Line 6). For a node
checked in round (k − 1), the upper bound of its marginal
influence is (Inf uk−1 + σ ({sk−1}) − σ (Sk−1)). If the upper
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Algorithm 1 R-Greedy Algorithm
Require: G, K
Ensure: S, σ (S)
1: for v = 1 to |V | do
2: calculate σ (v) and insert (v, σ (v)) into Q0
3: end for
4: for k = 1 to K do
5: maxMargin←−∞
6: for u ∈ V\Sk−1, σ (u) ≥ maxMargin do
7: if u ∈ Qk−1 and (Inf uk−1 + σ ({sk−1})− σ (Sk−1) <

maxMargin) then
8: Continue
9: else
10: Calculate Inf uk and insert (u, Inf

u
k ) into Qk

11: if Inf uk − σ (Sk−1) > maxMargin then
12: maxMargin← Inf uk − σ (Sk−1)
13: sk ← u
14: end if
15: end if
16: end for
17: Sk ← Sk−1 ∪ {sk}
18: σ (Sk )← σ (Sk−1)+ maxMargin
19: end for
20: return S, σ (S)

bound is smaller than maxMargin, the node is also ignored
(Line 7). In order to obtain the influence spread, Monte-Carlo
simulation is utilized in R-Greedy, leading extreme time cost
for convergence.

B. TECHNIQUES FOR IMPROVING R-GREEDY
In order to accelerate the R-Greedy algorithm, we propose
two techniques in this article: the propagation-path based
technique that removes users with small influential ability and
the live-edge based technique that can reduces the times of
Monte-Carlo simulations.

1) PROPAGATION-PATH BASED TECHNIQUE
Instead of considering all users in the signed network, with
propagation-path based technique, we only consider those
with high influence that could be potential seed users. The
influence from user u can be seen as the information spread
through paths starting from u, so we can calculate the influ-
ential ability of a user based on his propagation path and then
choose the users with high influence ability as potential seed
users.
Definition 2 (Propagation Path): A propagation path

from node u to node v (v 6= u) is defined as P =

〈v1 = u, v2, . . . , vm = v〉, where m > 1. The influence prob-
ability of path P is given by Pr(P) =

∏m−1
i=1 wvi,vi+1 .

Pr(P) gives the probability of node u to influence node v
through the propagation path P. Therefore, the sum of influ-
ence probabilities of all propagation paths from node u to
all reachable nodes can represent the influence ability of

the node u. The problem of enumerating all simple paths
is proved to be #P-hard in [24]. However, we find that the
influence probability of the propagation path will diminish
rapidly with the increasing of path length of P, since the
influence weight w among edges is constrained in [0, 1].
Therefore,We can define a threshold θ and prune all the paths
whose Pr(P) is smaller than θ . The procedure to calculat-
ing of the influential ability of a user is presented in detail
in Algorithm 2.

Algorithm 2 Calculate the Influence Ability of Users
Require: u, u′, p, θ
Ensure: inf u, influence ability of u
1: visitu′ ← true
2: inf u← inf u + p
3: for each v ∈ Adj(u′) do
4: p′← wu′,v × p
5: if visitv is false and p′ ≥ θ then
6: calInf (u, v, p′, θ)
7: visitv←false
8: end if
9: end for
10: return inf u

Algorithm 2 recursively calculates the influence proba-
bility of user u until the propagation path that starts from
u terminates or the influence probability of the propagation
path is smaller than the threshold θ . The parameter θ is used to
control the length of the propagation path. A smaller θ brings
the longer propagation paths, and makes the calculation of
influential ability more accurate, but also brings the problem
of larger time cost. So in Algorithm 2, θ is used to make
a trade off between accuracy and efficiency. visitu′ marks
whether the node u′ is visited or not.
In Algorithm 3, we present the whole process of obtain-

ing seed users through R-Greedy algorithm accelerated by
propagation path-based technique. At Line 1 we initialize a
max heap H to store the influence probability for all users.
At Lines 2–6, the influence probability of all users in the
graphG is calculated and inserted intoH . At Line 3, wherewe
refer to Algorithm 2, we initialize the influence probability
to 1.0 as node u influences itself with probability 1.0.
At Line 7, we use parameter t to control the size of candidate
set by choosing the top 1/2t · |V | users from H as the
candidate set. Then the R-Greedy algorithm is applied with
the candidate set as input users to obtain the final seed set S
(Line 8).

2) LIVE-EDGE BASED TECHNIQUE
Here, we propose the live-edge based technique to gener-
ate live-edge graphs which can be utilized to calculate the
influence spread. In [2], Kempe et al. have proved that the
LT model is equivalent to reachability in ‘‘live-edge’’ graphs.
For each node v ∈ V , we select one of its incoming edges by
the following rule. The incoming edge (u, v) of node vwill be
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Algorithm 3 R-Greedy Algorithm Adopting Propagation-
Path Based Technique
Require: G, K , t , θ
Ensure: S, σ (S)
1: Initialize a max-heap H
2: for each u in V do
3: inf u← calInf (u, u, 1.0, θ)
4: insert inf u into H
5: visitu← false
6: end for
7: CandidateSet ← choose the top 1/2t · |V | users from H
8: S, σ (S) ← use R-Greedy with CandidateSet as input

users
9: return S, σ (S)

selected at the probability wu,v while no edge will be selected
at the probability of 1−

∑
u wu,v. We call the selected edges

as live edges and all other edges as blocked edges. For all
nodes u ∈ V do the selection, we can obtain the ‘live-edge’
graph, which is equivalent to one Monte-Carlo simulation.
Cheng et al. [4] also have proved that if the computation of
influence spread is limited to a smaller number of live-edge
graphs, the computational expense can be reduced without
loss of accuracy. In this article, we dependently obtain Ng
‘‘live-edge’’ graphs and calculate the average σ (S) of all
‘‘live-edge’’ graphs.

In LT-S model, when a user u becomes active, he will form
an expressed opinion and diffuses his expressed opinion to
neighbors. According to (1), the expressed opinion of a user
is not only related with his innate opinion, but also with the
expressed opinions of neighbors who are in active status.
Thus the order of active users needed to be record when
we calculate the opinions of users in the live-edge. In Algo-
rithm 4, we adopt the breadth-first search (BFS) strategy to
traverse the live-edge graph G and create an ordered record
of active users. At lines 2–4, the expressed opinion and active
status of users in S are initialized. When visiting the ith layer
of Gr we use a queue Qi to record the reachable active users
in order. Seed users are firstly pushed into queueQ0 (Line 3).
Then node u is successively popped from queue in Line 7 and
for each node v reachable from u inGr , the expressed opinion
of v is calculated in Line 10–16. As the expressed opinion of
v is depended on his active neighbors, so we find those nodes
whose are the activated neighbors of v in the Line 11–14 of
Algorithm 4. In Line 17, node v is labeled in active status and
pushed into queue Qi+1.

C. ALGORITHMS ANALYSIS
Let n and m denote the number of nodes and edges in G
respectively. The R-Greedy algorithm execute Monte-Carlo
simulation to estimate and approximate the influence spread.
Its time complexity is therefore O(KnNs(n + m)), where
K is the size of seeds set and Ns is the times of simulations,
generally set to 10, 000.

Algorithm 4 R-Greedy Algorithm Adopting Live-Edge
Based Technique
Require: G, S, Ng (# live-edge graphs)
Ensure: σ (S)
1: for r = 1 to Ng do
2: for u in S do
3: yu← 1, activeu← true, enqueue u into Q0
4: σ (S)← σ (S)+ yu
5: end for
6: while Qi 6= ∅ do
7: while Qi is not empty do
8: u← dequeue from Qi
9: for v in users reachable from u in Gr do
10: y← 0
11: for each t ∈ Adj(v) do
12: if activet then
13: y← y+ yt × wt,v × st,v
14: end if
15: end for
16: yv← αv × zv + (1− αv)× y
17: activev← true, enqueue v into Qi+1
18: σ (S)← σ (S)+ yv
19: end for
20: end while
21: i← i+ 1
22: end while
23: end for
24: σ (S)← σ (S)/Ng
25: return σ (S)

The R-Greedy algorithm adopting the propagation-path
technique contains two parts. The first part calculates the
influential ability of users and chooses the most influen-
tial users as potential seed users; then in the second part,
R-Greedy is applied to select certain number of the most
influential users. The total time complexity is O(nn̄ +
KnNs(n′ + m)), where n̄ is the average number of nodes in
the local region within threshold θ , and n′ is the number of
‘most influential’ users.

The R-Greedy algorithm adopting the live-edge technique
also contains two parts. Firstly, generating Ng live-edge
graphs has the time complexity of O(Rm); secondly, it costs
O(KnNgm′) for R-Greedy to select seed nodes in Ng live-
edge graphs, where m′ is the average number of live-edges.
Therefore, the total time complexity is O(Ngm + KnNgm′),
where Ng (as suggested in [4]) is 100.

IV. EXPERIMENTS
In this section we conduct experiments on several real-world,
public signed social networks to evaluate the performance
of different algorithms. All algorithms are implemented in
C++ and measured on a server with Intel i7-3770 (3.9 GHz)
and 32GB main memory. Subsection IV-A describes the
experiment setup, includes the datasets, the compared
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TABLE 2. Statistics of datasets.

algorithms and the influence models used in our experiments.
Subsection IV-B illustrates the performances of our algo-
rithms from two aspects: (a) the achieved maximal influence
spread comparing to baseline algorithms; (b) the running
time comparing to baseline algorithms. Subsection IV-C com-
pares and analyses (a) different influence spread functions;
(b) influence maximization problem in signed and non-
signed social networks; (c) the tuning of parameters in our
algorithms.

A. EXPERIMENT SETUP
1) DATASETS
In our experiments, three large online social network data
setsWikipedia2, Epinion3, Slashdot3 are adopted, which have
been previously used as benchmarks in research for signed
social networks. In these three data sets, users in data set
are represented as nodes and interactions are represented as
links which are labeled as positive relationships or negative
relationships.
• Wikipedia is a who-votes-for-whom network in which
users can vote for or against others to be administrators
in Wikipedia. In this data set, the users that have edited
pages votes for or against each other, which makes the
interaction be positive or negative respectively.

• Epinions is a general consumer product review site in
which users can either trust or distrust other’s reviews.
User u Trust (distrust) a user’s reviews means there is a
link with positive (negative) relationship from u to the
user.

• Slashdot is a technology-related news web site known
for its specific user community. In this web site, users
can tag each other as ‘friend’ or ‘foe’ which makes the
directed links be positive or negative respectively.

Table 2 shows the comparison between the data sets where
‘‘+Links’’ represents for ‘‘Links with positive relationships’’
and ‘‘−Links’’ represents for ‘‘Links with negative rela-
tionships’’. The statistical difference demonstrates that these
three data sets can discrepantly represent the signed social
networks.

2) ALGORITHMS FOR COMPARISON
We compare our proposed algorithm (RLP) with two state-
of-art original greedy algorithms and modified versions of
R-Greedy with proposed techniques. The following is a list
of algorithms we evaluate in our experiments.
• CELFGreedy [CELF]. The greedy algorithm
with CELF optimization [6], denoted as CELF.

2http://konect.uni-koblenz.de/networks/wikisigned-k2
3http://snap.stanford.edu/data/index.html

Following the literature we set R = 10, 000 which
means that, for each seed set S, Monte-Carlo simulations
are conducted 10,000 times to obtain an accurate result.

• R-Greedy [RG]. The restricted greedy algorithm pro-
posed in [9], designed for an influence spread function
which is non-monotone and non-submodular. R is set to
be the same value as in CELF.

• R-Greedy with Propagation-Path [RP]. R-Greedy
using the propagation-path technique proposed in this
article. We set t to 5 and θ to 0.003.

• R-Greedy with Live-Edge [RL]. R-Greedy with the
live-edge technique for influence spread estimation pro-
posed in this article. R is set to 100, as suggested in [4].

• R-Greedy with Live-Edge and Propagation-Path
[RLP]. R-Greedy incorporating both live-edge and
propagation-path techniques, which uses the candidate
seed set provided by RP as the input seed set of RL.
R is the same as in RL; t and θ are the same as
in RP.

• MaxWeight Degree [Degree]. Select the K nodes with
the largest degrees which are the total influence weights
on the outgoing links (either negative signs or positive
signs).

To obtain the accurate influence spread of each algorithm,
for each seed set, we run the simulation on the net-
works 10,000 times and take the average of the influence
spread.

3) WEIGHTS ASSIGNMENTS
In LT-S model, each edge is assigned with influence weight,
in experiment, we adopt the weighted model and the triva-
lency model to generate the influence weight.
• Weighted Model [2], [4], [5], [25] sets the weight of
every incoming edge of v to be 1/dv, where dv is the
indegree of v.

• Trivalency Model [3], [5] sets the weight of edges
randomly from {0.1, 0.01, 0.001} then normalizes the
weights of all incoming edges to each node so that they
sum to 1.

4) INNATE OPINION, CONSISTENCY AND TRUST SETTINGS
To simulate real social interaction, we set the innate
opinion zu according to Gaussian distribution. We follow the
general social principles that the relationship between friends
are straight-out. Similar to [2]–[4], [10], we assume positive
relationships carry the opinions in a positive manner between
users, as people are more likely trust their friends. Thus,
we set consu,v, trustu,v as 1 when user u and v have positive
relationship, so that the influence type ru,v = 1. Conversely,
negative relationships influence the opinion ambiguously.
Considering the fact that negative relationship can also cause
positive influence to opinion spread, instead of uniformly
setting negative relationships as negative influence, we ran-
domly set consu,v and trustu,v as 1 or −1 to represent real
social network activities, so that the influence type ru,v could
change accordingly.
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FIGURE 3. Influence spread achieved by various algorithms on different datasets under all influence function σ (·)a. (a) Wikipedia with Weighted
Model. (b) Epinions with Weighted Model. (c) Slashdot with Weighted Model. (d) Wikipedia with Trivalency Model. (e) Epinions with Trivalency
Model. (f) Slashdot with Trivalency Model.

B. EXPERIMENTAL RESULTS
We evaluate the algorithms with two metrics including influ-
ence spread and running time. The influence spread reveals
the effectiveness of algorithms, and the running time reflects
the efficiency of algorithms. For the seed set obtained by
different algorithms, the same criterion is required to compare
the influence spread. Monte Carlo simulation is the common
standard in the influence maximization problem to assess
the influence spread. In this article, we run Monte-Carlo
simulation 10, 000 times for each seed set. The seed set
size K is in the range of 1 to 50 and we compare running
time using the case where K = 50.

1) INFLUENCE SPREAD
In this article, we propose two different influence spread
function: positive influence spread function, σ (·)p, which
maximizes only the positive opinions of all active users; all
influence spread function, σ (·)a, whichmaximizes the overall
opinions of all active users. Figure 3 and Figure 4 show the
influence spread under all influence spread function and pos-
itive influence spread function, respectively. The horizontal
axis of experimental results is the size of seed set, the vertical
one is the influence spread. In both Figure 3 and Figure 4,
we can observe among all datasets, the performance ofCELF
algorithm is the worst in all five greedy algorithms and very
unstable. The reason is that CELF is designed for the tradi-
tional influence maximization which has the monotone and
submodular influence spread function. In addition, RG and
our improved algorithms, RP, RL and RLP, achieve much
more stable and accurate results. The algorithm RG has the
best results among all datasets and influence models because

of the non-monotone and non-submodular influence spread
function. Our algorithms, RP, RL and RLP, have very close
influence spread to RG.
Compared with RG, RP, RL and RLP, the results of

Degree indicate that it is not effective by simply choosing
high-degree nodes. Among all datasets, Wikipedia achieves
the largest influence spread in both weighted model and
trivalency model. In trivalency models, all algorithms achieve
more influence spread than weighted models. The reason is
that the influence weight in trivalency models is larger than
that in weighted models.

Besides, we can learn that the final influence spreads of
three signed networks are significantly different. The reason
is that the influence spread of a network is actually related
to multiple factors about the properties of the network, such
as the size of the network, the density of the network or the
number of communities in the network. Different network
properties may cause tremendous difference among final
influence spreads.

2) RUNNING TIME
Table 3 shows the running time of different algorithms
applying two kinds of weight assignments and two kinds of
influence spread function on the Wekipedia, Epinions and
Slashdot datasets. Running time reflects the scalability of
algorithms. From the results, we can learn that both CELF
and RG are very time-consuming and not suitable for the
large-scale datasets. Algorithm RP is faster than CELF and
RG, but the improvement is not very significant. Algo-
rithms RL and RLP are several orders of magnitude more
efficient than RG. Compare weighted model with trivalency
model, we find that algorithms in trivalency model cost more
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FIGURE 4. Influence spread achieved by various algorithms on different datasets under positive influence function σ (·)p. (a) Wikipedia with
Weighted Model. (b) Epinions with Weighted Model. (c) Slashdot with Weighted Model. (d) Wikipedia with Trivalency Model. (e) Epinions with
Trivalency Model. (f) Slashdot with Trivalency Model.

TABLE 3. Running time of different algorithms with different influence
function and weight assignments (in hours and minutes). (a) Weighted
model under all influence function σ (·)a. (b) Trivalency model under all
influence function σ (·)a. (c) Weighted model under positive influence
function σ (·)p. (d) Trivalency model under positive influence
function σ (·)p.

time than in weighted model because the weights assigned
by trivalency model are uneven. Besides, algorithms under
positive influence function σ (·)p are slightly more time-
consuming than those under all influence function σ (·)a.

In conclusion, our improved R-Greedy algorithm with two
speed-up techniques RLP can achieve the best influence
spread with lowest time cost in signed social networks.

C. DISCUSSIONS
1) DIFFERENT INFLUENCE SPREAD FUNCTIONS
In this article, we consider two different influence spread
functions, positive influence function σ (·)p and all influence
function σ (·)a. We compare the difference between σ (·)p and
σ (·)a when setting seed size k = 50. Figure 5 and Figure 6
show the differences in six areas: the positive opinions of
all active users, negative opinions of all active users, all
opinions of all active users, the number of positive active
users, the number of negative active users, and the number of
all active users, where the blue bars are the results obtained
by applying positive influence spread function σ (·)p, and the
red bars are the results obtained by applying all influence
spread function σ (·)a. From Figure 5 and 6 we obtain the
results that the influence spreads of the positive opinions and
negative opinions of influence spread function σ (·)p are both
larger than those of σ (·)a in all datasets. The reason is that
σ (·)p is to maximize the positive opinions of all active users,
so the final positive opinions and final negative opinions are
larger than those of σ (·)a. As the influence spread function
σ (·)a is to maximize the overall opinions of active users, so in
almost all datasets (except Epinions with trivalency model),
the all opinions of influence spread function σ (·)a are larger
than those of σ (·)p. Figure 5 and 6 also show the results of
the number of (positive, negative, all) active users. In almost
all datasets (except Wikipedia with weighted model), σ (·)p
achieves more active users than σ (·)a. The reason is that the
efforts for maximizing influence spread of positive active
users tend to increase the number of positive active users.

These results demonstrate that in the practical applications,
if the company wants to maximize the overall opinions of
active users and minimize the negative opinions, then the
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FIGURE 5. Influence spread and active users achieved by various
algorithms under the weighted model. (a) Wikipedia with Weighted
Model. (b) Epinions with Weighted Model. (c) Slashdot with Weighted
Model.

better choice is σ (·)a; if the company wants to maximize the
positive opinions of active users, then the σ (·)p will satisfy
the demand.

2) LT-S MODEL IN SOCIAL NETWORKS WITHOUT SIGNED
RELATIONSHIPS
In this article, we consider the influence maximization prob-
lem in signed social networks and propose the LT-S model
incorporating opinion formation with signed relationships.
We conduct experiments on datasets to compare the differ-
ences of LT model and LT-S model in influence maximiza-
tion without signed relationships. The datasets Wikipedia,
Epinions and Slashdot contain the signed relationships,
we ignore the signed relationships to conduct the experiments
of influence maximization without signed relationships. The
influence maximization without signed relationships is the
traditional influence maximization problem, so CELF algo-
rithm [6] is carried out in the LT model. In the traditional
influence maximization problem, users in active status means
that they have generated their own opinion and are starting to
influence their neighbors. The influence spread is the active
users activated by diffusion models. In this traditional influ-
ence maximization problem, we also ignore the impact of
consistency and trust of users in LT-S model. Figure 7 shows
the influence spread achieved by LT model and LT-S model
in social networks without signed relationships. As shown

FIGURE 6. Influence spread achieved by various algorithms under the
trivalency model. (a) Wikipedia with trivalency model. (b) Epinions with
trivalency model. (c) Slashdot with trivalency model.

in Figure 7, the number of active users of LT-S model (the
pink line) is larger than those of LT model (the black line),
which indicates that LT-S model can activate more users
than LT model. Besides, we can observe that active users in
LT-S model are more than the users with positive opinions
in LT-S model (the blue line). The reason is that users in
active status cannot be positively influenced and always hold
positive opinions.

3) PARAMETER SETTINGS
1) Effect of propagation probability threshold θ on RLP.

Figure 8 shows the effect of different values of θ on the
RLP algorithm. In Algorithm 2 the parameter θ con-
trols the length of propagation paths, and Figure 8(a)
shows the running time taken to obtain influential users
using RLP. We notice that varying θ has little effect
on influence spread in Figure 8(b), but reducing θ
significantly decreases the running time in Figure 8(a).
We apply θ = 0.003 throughout the experiments to
balance the influence spread and running time.

2) Effect of candidate user set size |V |/2t on RLP.
Figure 9 shows the effect of different values of t on the
RLP algorithm. InAlgorithm 3 the parameter t controls
the size of the candidate users set by |V |/2t where |V |
is the number of all users. As t increases, the candidate
set becomes smaller and we can observe in Figure 9(a)
that the running time decreases. However, Figure 9(b)
shows higher t will damage the influence spread, so we
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FIGURE 7. The influence spread achieved by LT model and LT-S model in soical networks without signed relationships.
(a) Wikipedia with Weighted Model. (b) Epinions with Weighted Model. (c) Slashdot with Weighted Model. (d) Wikipedia
with Trivalency Model. (e) Epinions with Trivalency Model. (f) Slashdot with Trivalency Model.

choose t = 5 as a compromise between influence
spread and running time.

V. RELATED WORK
A. INFLUENCE MAXIMIZATION
Social influence has been a widely accepted phenomenon in
social networks for decades. Many applications have been
built based on the implicit social influence between peo-
ple, such as marketing, advertisement and recommendations.
Recently, there are many efforts have been put to under-
stand influence qualitatively and quantitatively. [26]–[28] try
to distinguish influence and homophily in social networks,
[29], [30] quantifying influence and selection, [31]–[33]mea-
sure social influence quantitatively. Reference [34], [35] learn
the influence probabilities from social data.

Influencemaximization is one of themost interesting prob-
lems in the study of social influence and has received much
research interest in recent years.

Dominigos and Richardson [1] are the first to study influ-
ence maximization in probabilistic settings. Kempe et al. [2]
formulate influence maximization problem as a discrete

optimization problem. They prove that the problem is NP-
hard and the influence spread function is monotone and
submodular under both the IC and LT models. Given these
properties, a greedy algorithm which guarantees (1 − 1/e)
approximation ratio is proposed to solve the influence maxi-
mization problem. The fundamental idea of greedy algorithm
is to repeatedly select the user with largest marginal influence
spread as seed uses and add it into the seed set until the budget
number is reached. Through experiments they show that the
greedy algorithm significantly outperforms the classic degree
and centrality-based heuristics in influence spread. The main
time-cost part is to compute exact influence spread under both
IC and LTmodels, which is proved to be #P-hard in [3]. Thus,
Monte-Carlo (MC) simulations are used in each iteration to
effectively estimate the influence spread. Monte-Carlo sim-
ulations can slightly accelerate the influence spread, but the
greedy algorithm is still very time-consuming in practice and
not scalable for large social networks. A number of studies
are devoted to addressing this efficiency issue.

In [6], Leskovec et al. propose an optimization algo-
rithm, called ‘‘Cost-Effective Lazy Forward’’(CELF) algo-
rithm. The CELF algorithm fully exploits the submodularity
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FIGURE 8. The effect of θ on running time and influence spread under
the weighted model. (a) Running time to obtain influential users.
(b) Influence spread.

FIGURE 9. The effect of t on running time and influence spread under
the weighted model. (a) Running time to obtain influential users.
(b) Influence spread.

of influence spread functions to greatly reduce the number
of evaluations during influence spread. Their results show
that CELF algorithm achieves as much as 700 times speedup
in selecting seed users. Although CELF algorithm is faster
than original greedy algorithm, it still not scalable to large
networks with hundreds of thousands of nodes and edges.
Chen et al. [25] generate a new smaller graph by removing the
unreachable edges and nodes for every Monte-Carlo simula-
tion. In the equivalent smaller social graph, they use a linear
scan of the new graph by BFS or DFS to speed up the greedy

algorithm. This algorithm is named as NewGreedy. Based
on NewGreedy algorithm, they also propose a MixGreedy
algorithm, which combines NewGreedy algorithm and CELF
optimization. In MixGreedy algorithm, NewGreedy is used
in selecting the first seed user and CELF optimization is used
in the selection of rest seed uses. A static greedy algorithm
is creatively proposed by Cheng et al. [4], which reuses the
generated subgraphs to guarantee the submodularity property
of the influence spread function.

In substitution for Monte-Carlo simulations, several kinds
of heuristic algorithms are proposed. Different from the
greedy-based algorithms, heuristic algorithms fully exploit
the properties of models and the structures of networks
to avoid Monte-Carlo simulations. DegreeDiscount algo-
rithm [25] is firstly proposed by Chen et al. The main idea
of DegreeDiscount algorithm is to discount the degrees of
neighbors when considering to add the node of the largest
degree into seed set. Chen et al. [3] propose to restrict the
computations to the local influence regions of nodes and
maximum influence paths is adopted to estimate influence
spread. Jung et al. [5] propose the IRIE algorithm that inte-
grates influence ranking with influence estimation to avoid
the disadvantages of primitive influence ranking methods.

The heuristic algorithms are fast and greatly improve the
efficiency problem of greedy algorithms. But without theoret-
ical guarantees, and the solution quality of them is very unsta-
ble. Arora et al. [36] proposed a platform for benchmarking
various IM techniques to help users choose the best one given
specific scenarios.

Recently, researchers have observed the dynamic nature of
social networks due to the social interaction and data trans-
mission. Wang et al. [37] define Stream Influence Maximiza-
tion (SIM) query to address the task of the real-time influ-
ence maximization in dynamic social networks, and propose
Influential Checkpoint framework for SIM query processing.
Tong et al. [38] state there are uncertainness in diffusion
process in dynamic social networks because of high-speed
data transmission and large population of participants. They
propose a dynamic independent cascade model and a greedy
adaptive seeding strategy to solve the problem.

B. DIFFUSION MODELS
Recently, several models have been proposed that extend IC
and LT. Chen et al. [8] consider both positive and negative
opinions in real social networks and extend the IC model into
IC-N model. In IC-N model, the active status of users can be
positive and negative and they introduce the parameter q to
control the spread of negative opinion. Although IC-N model
has a extension of IC model and considers negative opinions,
the parameter q is the same for all users is too simplistic and
not always realistic.

Reference [7], [39]–[41] focus on the case when multi-
ple innovations are competing within a social network and
propose the diffusion models in competitive settings. This
scenario exists frequently in real world where multiple com-
panies with comparable products to run for competition.
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Li et al. [42] propose the polarity-related influence maxi-
mization (PRIM) problem which aims to find the seed node
set with maximum positive influence or maximum negative
influence in signed social networks, and they extend standard
IC model to the proposed Polarity-related Independent Cas-
cade (IC-P) model.

Chen et al. [43] study the time-constrained influence
maximization problem. They notice that in real diffusion,
the influence diffused one user to other one can be delayed
and also diffusion has the constraint of time. For example,
one company wants to promote new product in three days,
so a user A can influence user B needs they will meet each
other in three days. According to these, they propose the
IC-M model. In [44], Liu et al. also consider the time-
constrained and propose the LAIC model.

In [10], the IM problem has been extended into continuous-
time diffusion networks, Feng et al. [9] consider the problem
of influencemaximization with novelty decay, [7] extends the
problem to competitive settings. In [45] they distinguish the
influence from adoption and propose the LT-C model.

Litou et al. [46] proposed Correlated Contagions Dynamic
Linear Threshold (CCDLT) model to address the problem
that the correlation of multiple contagions simultaneously
cascade in the social network and analyze how these affect
the users’ decisions regarding the adoption of a contagion.

C. SIGNED SOCIAL NETWORKS
Signed network analysis was first proposed in Heider [12]
and was formalized by Carwright and Harary [11]. With
the rapid development of online social networks, the signed
networks have already attracted much attention from com-
puter scientists. Researchers in [47]–[49] attempt to predict
the sign of the relationship between two given entities in a
signed social network. The problem was first considered by
Guha et al. [47] Kunegis et al. [48] focus on study-
ing the problem with varied similarity functions, and
Leskovec et al. [49] study this problem based on machine
learning. Li et al. [14] extend the classic voter model to signed
networks and analyze the dynamics of influence diffusion of
two opposite opinions.

The other studies in signed social networks are in the
direction of community detection. An agent-based method
proposed by Yang et al. [50] performs a random walk on
positive link. Chiang et al. [51] propose an effective low-rank
modeling approach are. Li et al. [14] study influence diffusion
in signed networks and extend the classic voter model by
incorporating negative relationships.

D. OPINION FORMATION
Not only in real-world communication, but also in online
social networks, most people hold opinions about hot topics,
events and so on. The opinions can be formed either through
interactionswith other people or the result of reflection. Opin-
ion formation tries to study the opinion formation of people
and describe the process of opinion diffusion. Many opinion
formation models have been presented in the sociology and

statistics literature. The notable model in opinion formation
is the one proposed by Degroot. In [15], Degroot propose
the generation of consensus that individuals’ opinions are
updated by averaging the opinions of their neighborhood.
Friedkin and Johnsen [17] are the first to extend the Degroot
model, which take both disagreement and consensus into
consideration. Clifford et al. [52] propose another famous
model, namely the voter model. In the voter model, at each
step a selected node randomly pick one of its neighbors at
uniform probability and adopts the opinion of the picked
neighbor as its own. Srivastava et al. [53] study the problem
of competing cascades on signed networks which explore
the progressive propagation of two competing cascades in a
signed network under the IC model and LT model.

VI. CONCLUSION
In this article, we studied the influence maximization prob-
lem in signed social networks with opinion formation. Con-
sidering social interactions in real world, we proposed a
new diffusion model called LT-S that incorporates both
opinion formation and signed relationships. Based on the
LT-S model, we formulated the influence maximization prob-
lem in signed social networks. We also proved that the influ-
ence spread functions under LT-Smodel are neithermonotone
nor submodular and proposed an improved R-Greedy algo-
rithm, namely R-Greedy with Live-edge and Propagation-
path (RLP), which combines R-Greedy with the two effective
speed-up techniques.We conducted extensive experiments on
datasets taken from large, real-world, signed social networks,
and presented results that demonstrate the superior effective-
ness and efficiency of the RLP algorithm.
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