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Abstract In recent years, relationship prediction in hetero-
geneous information networks (HINs) has become an active
topic. The most essential part of this task is how to effec-
tively represent and utilize the important three kinds of
information hidden in connections of the network, namely
local structure information (Local-info), global structure
information (Global-info) and attribute information (Attr-
info). Although all the information indicates different fea-
tures of the network and influence relationship creation
in a complementary way, existing approaches utilize them
separately or in a partially combined way. In this article,
a novel framework named Supervised Ranking framework
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(S-Rank) is proposed to tackle this issue. To avoid the class
imbalance problem, in S-Rank framework we treat the rela-
tionship prediction problem as a ranking task and divide it
into three phases. Firstly, a Supervised PageRank strategy
(SPR) is proposed to rank the candidate nodes according
to Global-info and Attr-info. Secondly, a Meta Path-based
Ranking method (MPR) utilizing Local-info is proposed to
rank the candidate nodes based on their meta path-based
features. Finally, the two ranking scores are linearly inte-
grated into the final ranking result which combines all the
Attr-info, Global-info and Local-info together. Experiments
on DBLP data demonstrate that the proposed S-Rank frame-
work can effectively take advantage of all the three kinds
of information for relationship prediction over HINs and
outperforms other well-known baseline approaches.

Keywords Relationship prediction · Ranking strategy ·
Meta path · Heterogeneous information networks

1 Introduction

Relationship Prediction is known as Link Prediction ini-
tially. Link prediction problem is formally defined by
Liben-Nowell and Kleinberg [15]. Given a snapshot of a
network at time t , link prediction aims to predict new links
created in future time interval [t, t ′]. There are various appli-
cations that substantially take advantage of link prediction
frameworks or algorithms. In social networks, individuals
can efficiently and effectively find companions, assistants,
or colleagues [11]. In academic communities, researchers
can easily apply link prediction methods to discover poten-
tial collaborators by predicting the co-author relationship
[25], or find highly related publications by mining the
citation prediction problem [34].
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Most link prediction approaches are proposed based
on traditional ideal networks, i.e., homogeneous networks,
which contain only one type of link and node. However, in
the real world, the relations between objects mostly gen-
erate more complicated networks, namely Heterogeneous
Information Networks (HINs), in which nodes and links are
of multiple types [8]. Researchers [25, 27] conclude that
the link prediction problem could be extended to an anal-
ogous but more general problem, namely the relationship
prediction problem in the context of HINs. Relationship
prediction aims to predict a specific relation between two
types of nodes. In contrast of a single link, a relation might
be represented by a sequence of links, which also makes
the relationship prediction tasks more complex than the
link prediction ones. The emergence of relationship is pre-
dictable due to such assumption that there exists latent
information encoded in links and nodes, which is the main
reason why the relationship was generated in networks.
Therefore, the key issue of relationship prediction in HINs
is how to effectively represent, extract and model the latent
information. The latent information in HINs can be gen-
erally divided into two types: structure information and
attribute information.

Firstly, topological features between objects can be
referred to as structure information. In this article, we divide
the structure information into two categories by review-
ing existing methods [15, 25, 33], namely local structure
information (Local-info) and global structure information
(Global-info), which reflect different aspects of structural
features. Figure 1 shows a small citation network, where the
arrows from circles to squares mean authors write papers
and the arrows from squares to squares mean one paper cites
another paper. From this figure we illustrate the difference
between Local-info and Global-info through a simple rela-
tionship prediction problem: predicting which paper will
probably be cited by author A in the future, P1 or P6?

It is obvious that there are more paths between A and
P6 than those between A and P1. Considering the existence
of more common neighbors, P6 is more likely to be cited
by A in the future. This kind of information (number of
paths, common neighbors between two nodes, etc.) is repre-
sented as Local-info. Meta path [26], connecting two types
of objects through different object type composition, is one

Fig. 1 A simple example of citation networks

of the typical methods using the Local-info in HINs. On the
other hand, P1 has higher degrees (indegrees or outdegrees)
than P6, which means P1 may have higher influence and
reputation in the network. In reality, P1 may be a famous
paper in the related academic field of A. Hence, it is of high
probability that A will cite P1 in the future. This kind of
feature (degree, global reputation, etc.) is viewed as Global-
info. The most representative method using Global-info is
PageRank [20] which assigns high value to the nodes with
high degrees. Therefore, Local-info and Global-info are
both useful but represent two totally different insights when
solving the relationship prediction problem using network
topologies.

Secondly, emergence of new relations are usually gen-
erated by particular reasons because HINs represent real-
world networks. This means there are abundant semantic
meanings hidden in links. In such bibliography networks as
Fig. 1, there are many reasons for an author to cite a particu-
lar paper: the paper is the latest research; the paper is highly
related to the author’s papers, etc. There are many features
related to edges and objects in HINs, such as published year
and relevancy between papers in the above-mentioned
example. Such kind of features are denominated as attribute
information (Attr-info). Thus, Attr-info also has significant
impact on the creation of new relationships.

Global-info, Local-info and Attr-info are all useful infor-
mation for relationship prediction and they work in a dif-
ferent but complementary way. Local-info may lose the
position of node in the whole network, Global-info is biased
to highly visible objects, and Attr-info has deep significance
in modeling real-world behaviors. Therefore, it is essen-
tial to combine all three kinds of information together to
represent the creation of links in a better way.

To the best of our knowledge, there is no existing method
that combines all the three kinds of information together in
HINs, since it is not an easy task to effectively integrate all
the information in one framework. To tackle this issue, in
this article, a novel supervised ranking framework (S-Rank)
is proposed for the relationship prediction in HINs, which
completely combines Global-info, Local-info and Attr-info
together. S-rank framework carries out in three phases. In
the first phase, a Supervised PageRank method (SPR) is
firstly utilized to capture the rich Attr-info and Global-info
hidden in HINs. A set of feature vectors is defined to rep-
resent the Attr-info of different types of links. Then, the
capacity of each link can be computed by assigning weights
to the feature vector. Finally, all nodes will obtain a score by
iteratively computing PageRank which can capture Global-
info simultaneously. In the second phase, a Meta Path-based
Ranking method (MPR) is proposed to score nodes utilizing
meta path-based measures which can capture the Local-info.
In the final phase, the results of SPR andMPR are integrated
together to obtain the final ranking result. The differences
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between our S-Rank framework and the existing methods
are summarized in Table 1.

The main contributions of this article are summarized as
follows.

– We deeply analyze and discuss how the three kinds
of information (Global-info, Local-info and Attr-info)
impact on the relationship prediction over HINs.

– We propose a novel three-phase Supervised Ranking
framework (S-Rank) for the relationship predication
problem in HINs. To the best of our knowledge, our
work is the first to completely combine Global-info,
Local-info and Attr-info together.

– In the first phase of S-Rank, we propose a Super-
vised PageRank strategy (SPR) to rank the candidate
nodes. In SPR, the capacity of each link is computed
according to attribution features of the link. Therefore,
both the Global-info and the Attr-info can be utilized
simultaneously.

– In the second phase of S-Rank, we propose aMeta Path-
based Ranking method (MPR) which uses Local-info to
rank the candidate nodes based on their meta path-based
features.

– In the final phase of S-Rank, we linearly integrated the
two ranking scores into the final ranking result which
combines all the Attr-info, Global-info and Local-info
together.

– Experiments on DBLP show that our framework can
effectively incorporate three kinds of information and
significantly outperforms the baseline methods.

In the rest of the article, we first introduce the preliminar-
ies about heterogeneous information network and formalize
the problem in Section 2. The proposed S-Rank framework
is described in Section 3. Experiments and results are pre-
sented in Section 4. Finally, we review the related work in
Section 5 and conclude our work in Section 6.

A preliminary version of this article was presented at
“the 29th International Conference on Industrial Engineer-
ing and Other Applications of Applied Intelligent Systems”
(IEA/AIE 2016) [14]. In this article, we extend the follow-
ing contents. In Section 1, a table (Table 1) is added to
summarize the difference between our proposed method and
the existing ones. In Section 2.1, we explain main concepts

about heterogeneous information network and particularly
introduce DBLP network that is used in this article. In
Section 2.2, we explain why S-Rank framework can deal
with the imbalanced dataset. An additional graph is pre-
sented in this section to show an overview of S-Rank frame-
work. More detailed derivation and computing methodol-
ogy of some complicated formulas are supplemented in
Section 3. In the end of Section 3, we discuss the complexity
of S-Rank framework. Then, we reorganize the experiments
part in Section 4, in which more details are declared. In
Section 4.2, we add one more measure named PathSim that
is an excellent method to measure the relationship between
two nodes and present an example to illustrate the measures.
Additional experiments that discuss the impact of training
time and restart parameters are performed and discussed in
Sections 4.4.4 and 4.4.5, respectively. Finally, related work
is conducted as an individual section in Section 5.

2 Problem definition

In this section, we introduce the heterogeneous information
network and formulate the relationship prediction problem
in this network context.

2.1 Heterogeneous information network

A heterogeneous information network (HIN) is an infor-
mation network that involves multiple types of objects and
relations. In this section, in order to describe the HIN more
precisely and formally, we slightly modify the definition
of Information Network and Network Schema in [26] to
follow the context of this article.

Definition 1 (Information Network) An Information Net-
work is defined as a directed graph G = (V, E, F) with an
object type mapping function φ : V → A, an edge type
mapping function ϕ : E → R and a feature type mapping
function δ : F → T , where each object v ∈ V belongs to a
particular object type φ(v) ∈ A, each edge e ∈ E belongs to
a particular relation type ϕ(e) ∈ R, and each feature F ∈ F
belongs to a particular feature type associated with an edge
δ(f ) ∈ T .

Table 1 Comparison of some
existing methods and our
s-rank framework

Method Attr-info Local-info Global-info Supervised HIN Universal

PathPredict [25]
√ √ √ √

Bucket [34]
√ √ √ √

RW ALL [13]
√ √

SRW [1], SSP [7]
√ √ √ √

S-Rank
√ √ √ √ √ √
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When both the types of objects |A| > 1 and the types
of edges |R| > 1, the network is called heterogeneous
information network (HIN); otherwise it is a homogeneous
information network, which is the model of traditional net-
work. Set F denotes the rich attribute information encoded
in HINs (we attach both object attributes and edge attributes
information to form the feature vector f ). Since f is associ-
ated with edges, we have |R| = |T |, so feature vector for
the each edge type has the corresponding feature represen-
tation. Formally, we can denote F as F = {ft |t ∈ T }, and
ft = (f 1

t , f 2
t , ..., f n

t ) where n is the number of features of
edge type t .

Definition 2 (Network Schema) The network schema is a
meta template of a HIN G = (V, E, F) with the object type
mapping function φ : V → A, the edge mapping function
ϕ : E → R and the feature type mapping function δ : F →
T , which is a directed graph defined over object types A,
with edges as relations from R as well as attribute template
T and denoted as TG = (A,R, T ).

The definition of network schema is similar to the ER
(Entity-Relationship) model in database systems. It serves
as a template for a specific network, and defines the rules of
how entities exist, how relationship should be created and
how features in both edge and node should be extracted.
Based on the definition of network schema, we can apply
basic graph search methods (such as BFS) to obtain themeta
path [26, 34].

Definition 3 (Meta Path) A meta path P = A0
R1−→

A1
R2−→ ...

Rl−→ Al is a path defined on the graph of net-
work schema TG = (A,R), where Ai ∈ A and Ri ∈ R
for i = 0, ..., l, l is called the length of meta path. For
i = 1, ..., l − 1, A0 = dom(R1), Al = range(Rl) and
Ai = range(Ri) = dom(Ri+1), where the start node type
and end node type of P are defined as dom(P) = A0 and
range(P) = Al , respectively.

Cite

Year, author 
order, author 

age

Title similarity, 
year

Venue impact, 
year

Fig. 2 Network schema of DBLP

Meta path is a kind of pattern. A mass of path instances in
a network can be obtained by following a given meta path.
For convenience, we remove the edge type and denote meta
path as: P = A0 → A1 → ... → Al . To make the defini-
tion of network schema and meta path more clear, here we
present an exquisite example.

Figure 2 is the network schema of DBLP,1 in which there
are three kinds of objects. A indicates authors, P represents
papers and V denotes venues (conferences or journals). In
addition, there exist three types of edges (|R| = 3) as well
as edge features (|T | = 3) in the networks. In this arti-
cle, both edge attributes (title similarity and author order)
and object attributes (year, venue impact and author age)
are included in set F. Comparing with [7], we do not treat
attributes in edge and object separately, since the same
attribute (e.g., year) may have various impacts when it is
placed in diverse types of relations for HINs. Examples of
meta path exists in DBLP are given in Table 2.

Previous studies [25, 27] have defined the target relation
as either a relation in R or a composite relation described
by a meta path. In the example network schema of DBLP
(Fig. 2), the citation relation can be defined by meta path
A − P → P while path A − P − V − P − A denotes
the relation that two authors publish papers in the same
venue. The relationship between objects can be referred as
instances of the target relation. Relationship prediction is to
predict whether there will generate a relationship instances
that follows target relation. In addition, Objects may have
relationships several times. For instance, Jiawei Han and
Philip S. Yu have co-authored papers many times, which
indicates that it is of high probability for Philip S. Yu to
have the co-author target relation with Jiawei Han. In other
words, a path instance carries relationship information that
follows the relation defined by its meta path in the network.

2.2 Problem formulation

Generally, given a HIN G = (V, E, F), a source node s ∈ V
and a set of candidate nodes C ⊂ V to which s may create
relationships. A meta path P represents the target relation
and the function φ(s) gets the node type of s (notations used
in definitions and formulation as well as the rest part of the
article can be found in Table 3). Then the relationship pre-
diction task is to predict whether there will be a relationship
between two nodes s ∈ V and v ∈ C in the future, where
φ(s) = dom(P) and φ(v) = range(P). Some details about
how C is selected are stated as following: φ(s) and φ(v)

can either be identical or not; the self-relation is not taken
into consideration, i.e., s /∈ C; we are interested in pre-
dicting new relationships rather than repeated relationships,

1http://www.informatik.uni-trier.de/∼ley/db/.

http://www.informatik.uni-trier.de/~ley/db/
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Table 2 Examples of meta
paths Meta Path Description Length

A − P An author writes a paper 1

P → P A paper cites another paper 1

A − P → P An author cites a paper 2

A − P − A Two authors co-author one paper 2

A − P − V − P − A Two authors publish papers in the same venue 4

A − P − A − P → P An author’s co-author cite a paper 4

and hence s never have any relationships with v. More-
over, although we only consider the situation of a single
source node, our framework can be easily generalized for
the prediction tasks that contain a group of source nodes.

We address the relationship prediction problem in a rank-
ing manner, i.e., the proposed algorithm will assign higher
score to the nodes that have more relationship instances
with s. The score(v) is computed differently in the two
phases of S-Rank. In Supervised PageRank (SPR), score(v)

is computed through modified PageRank model, while in
Meta Path-based Ranking (MPR), it is computed by meta
path-based measures. Actually, score(v) indicates the prob-
ability that v will create target relation with the source node
s in the future.

Table 3 List of notations

Notation Description

G HINs

V,A objects in HINs, object types

E,R edges in HINs, edge types

F,T feature set, feature types

φ, ϕ, δ the mapping functions of types

P a meta path

dom(P) the start node type of a meta path

range(P) the end node type of a meta path

MP a measure based on P
p the stationary distribution of PageRank

Q the probability transition matrix in PageRank

W weight vector set associated with feature types

g weight vector associated withMP

cuv the edge capacity

πwi
(f ) calculation function for cuv

C candidate node set

T training set of node pairs

P selected meta paths set

Rank1 result of the first phase of S-Rank

Rank2 result of the second phase of S-Rank

SRank result of S-Rank

Ln is defined to represent the set of labeled nodes, to
which s has ever created relation P for n times (n ≥ 0). It
is obvious that L0 = C, and ∀v ∈ Ln, φ(v) = range(P).
Then, a training set of pairs is generated as: T = {〈u, v〉|u ∈
Li , v ∈ Lj and i > j}. Hence, the potential meaning for each
pair 〈u, v〉 ∈ T is that s is more likely to have relationships
with node u than v. This methodology of generating training
set can effectively avoid the imbalance problem. As men-
tioned in [19], relationship prediction dataset is extremely
imbalance. The number of relationships known to be present
is often significantly less than the number of relationships
known to be absent. The fact that the training set has fewer
examples of one class poses a difficulty for traditional
classifiers which aim to infer reliable patterns in a super-
vised way. However, the size of training set is guaranteed in
S-Rank, since T is the combination of nodes, to which s has
ever created relationships for many times.

Take simplified DBLP network illustrated in Fig. 3 as an
example, node s is an author as the source node, and other
nodes are papers. The green part is a specific period of the
network, the blue part indicates new links generate in future
network, and the links are citation relationships denoted by
meta path A − P → P . Then C = {1, 4, 5, 6, 7}, since these
nodes have never been cited by s before. Instead of simply
setting {1, 2, 3, 4} as training set, a set of pairs of nodes is
formed as T = {〈2, 3〉, 〈2, 1〉, 〈2, 4〉, 〈3, 1〉, 〈3, 4〉}, which
can increase the number of training samples and avoid the
imbalance problem. Now, the goal is to predict which nodes
inCwill be cited by s. In this article, S-rank will score these
5 papers to assess the probability they may create links to s,
then rank them in descending order. The performance of
S-rank can be evaluated by comparing the result with real
future network (the blue part).

3 S-rank framework

In this section, a three-phase framework, S-Rank, is pro-
posed. We first introduce the overview of the supervised
ranking model. Then two supervised ranking phases are pro-
posed and illustrated in detail. Finally, the results of the two
phases are integrated into the final ranking result.
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Fig. 3 A simple example for
relationship prediction
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3.1 Framework overview

Following the similar work [25], we divide the supervised
framework into two stages, i.e., Training Stage and Test-
ing Stage. To simulate a dynamic network, we will partition
two time intervals as current network and future network for
both stages. In the training stage, the nodes that never have
relationships with the source node s in time interval T0 =
[t0, t1] are selected as candidate node set C and the features
are also extracted; then label information from time interval
T1 = [t1, t2] are extracted to form the supervised node pair
set T. In the testing stage, we extract features in the time
interval T0

′ = [t0′, t1′], and apply the learned knowledge in
the training stage to predict new relationships in time inter-
val T1

′ = [t1′, t2′]. Finally, we can evaluate the prediction
according to the ground truth in T1

′. We take the DBLP net-
work as an example to illustrate our S-Rank framework in
Fig. 4. Actually, T1 and T1

′ are the future status for the net-
work in T0 and T0

′. On the other hand, T0 is the history for
T0

′ from which we can learn the patterns.

3.2 Supervised ranking model

Inspired by the outstanding work [1], a supervised ranking
technology is proposed to learn the hidden patterns (aweight
vector θ ) from the historical data T. More specifically, θ in
Supervised PageRank (SPR) will guide the walker to visit
those nodes to which swill create relationships in the future;
θ in Meta Path-based Ranking Method (MPR) indicates the
importance of different meta paths in the process of creating
relationships. The objective of the supervised ranking model
is to minimize the following function.

min
θ

F (θ) = ||θ ||2 + λ
∑

〈u,v〉∈T
l(score(v) − score(u)), (1)

where ||θ ||2 is the regular term that prevents overfitting.
Considering the underlying meaning of pair 〈u, v〉, namely
s is more likely to have relationships with node u than v,
l(.) will assign a non-negative penalty based on score(v) −
score(u). If score(v)−score(u) >= 0, l(.) > 0; otherwise
l(.) = 0. Parameter λ controls how the fitness of the model

Phase 2: MPRPhase 1: SPR

Compute Rank1 by SPR Compute Rank2 by MPR

Training pairs (u,v)

Candidate nodes

Training set

Generate

Attribution

features

Meta path

features

Attribution

features

Meta path

features

Testing set

Integrate into final rankRank1 Rank2

Generate

Learnt weight: W Learnt weight: g

Fig. 4 S-Rank framework
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affects the optimal value. This model is applied in both SPR
and MPR.

3.3 First phase: supervised pagerank (SPR)

PageRank, as a powerful method that can capture the
Global-info in graph ranking, can be expressed by Eq. 2.
The vector p is the stationary distribution of the PageRank.
Q is the probability transition matrix. In this subsection, we
aim at presenting a mixture model that combines both the
Global-info and Attr-info.

pT = pT Q (2)

Given a HIN G = (V , E, F ) contains rich attribute informa-
tion (f ∈ F ), the challenge is to make a connection between
the weight vector θ and the feature vector F in HINs in order
to apply (1) to learn θ .

To achieve this goal, the weight vector θ is extended to a
weight vector set W = {w1, w2, ..., wn}, where n = |R|. wi

is utilized to weight F, namely for each edge (u, v) ∈ G, we
can calculate the capacity cuv = πwi

(f ) by combining wi

and f ∈ F . Function πwi
(f ) takes the product of wi and F

as input. cuv indicates the ability that edge (u, v) can guide
s to visit the target nodes. Then the conductance matrix Q′
is computed as:

Q′
uv =

{
cuv∑
w cuw

if (u, v) ∈ E

0 otherwise.
(3)

Further, Q can be obtained by the general calculation in (4),
where 0 < α < 1 is the probability of jumping (as against
walking) in each step. α(v = s) means α is calculated only
when v = s and thus each row of Q sums to 1.

Quv = (1 − α)Q′
uv + α(v = s) (4)

Thus, by modifying the objective function in (1), we can
obtain (5), where p denotes the stationary distribution of
the PageRank. Notice that there is a difference of objective
function with previous work [1]. Considering the candi-
date set C and different meta path-based features of source
authors, instead of minimizing the value of objective func-
tion for all the source authors in one equation, we train the
weight W for each author multiple times and calculate the
mean value as the final value of W .

min
W

F(W) =
∑

wi∈W

||wi ||2 + λ
∑

〈u,v〉∈T
l(pv − pu) (5)

To solve this optimal problem, a gradient descent-based
method is applied. For each wi , we can write the derivative
as follows.

∂F (W)
∂wi

= 2wi + λ
∑

〈u,v〉∈T
∂l(pv−pu)

∂wi

= 2wi + λ
∑

〈u,v〉∈T
∂l(pv−pu)
∂(pv−pu)

(
∂pv

∂wi
− ∂pu

∂wi
).

(6)

Given a loss function l(.), it is simple to compute the deriva-
tive ∂l(pv−pu)

∂(pv−pu)
. However, it is not an easy task to compute

∂pu

∂wi
, since there exists recursive relation in (2). Notice that

(2) can be rewritten as pu = ∑
j pjQju and the recursive

equation is

∂pu

∂wi

=
∑

j

Qju

∂pj

∂wi

+ pj

∂Qju

∂wi

, 〈j, u〉 ∈ E. (7)

L. Backstrom and J. Leskovec [1] adopts a power-method
like algorithm to compute ∂pu

∂wi
. It recursively applies the

chain rule to (7). We extend the algorithm to fit our prob-
lem. The extended algorithm is described in Algorithm 1.
For each node u, it repeatedly computes the derivative ∂pu

∂wi

for every kind of weightwi ∈W based on the result obtained
in previous iteration. When the algorithm ends, all ∂pu

∂wi

are computed and can be directly applied to (6). As W is
updated in each iteration in gradient descent, the probability
transition matrix Q also needs to be updated. We preprocess
it before Algorithm 1 starts and take Q as the input of Algo-
rithm 1. Despite the fact that different nodes are distinct
from node type, we initialize the value p with 1

|V | since the
result of PageRank has nothing to do with the initial value.



1118 W. Liang et al.

To compute ∂pu

∂wi
, we further need to compute

∂Qju

∂wi
. The

following Equation

∂Qju

∂wi

= (1 − α)

∂cju

∂wi
(
∑

k cjk) − cju(
∑

k

∂cjk

∂wi
)

(
∑

k cjk)2
(8)

can be easily obtained by deriving (2) and (7). Remind that
when (j, u) /∈ E, its value is 0.

After finishing the computation of ∂F (W)
∂wi

, a gradient
descent method can be applied to minimize F(W) directly.
Gradient descent may not converge to a global minimum
since the optimal problem is not convex. Other methods
such as Genetic Algorithm (GA) can be also considered. But
it is difficult to encode the answer since we have no idea
about the value domain. In practice, we resolve this prob-
lem by randomly initializing W at several different starting
points, and take the best answer as the result.

Although all nodes in HINs are ranked, we only concen-
trate on the nodes in candidate node set C. Thus, when we
conduct the evaluation, only value of pv (v ∈ C) is extracted
from the stationary distribution of PageRank to calculate the
ranking result.

3.4 Second phase: meta path-based ranking method
(MPR)

Compared with PageRank which takes use of the Global-
info, topologies represented by meta path can be referred
as the Local-info in HINs, which has been proven to be an
excellent local structure feature [25–27].

In MPR, for a candidate node v ∈ C and a source node s,
we define the score(v) in (1) as kv by utilizing a lin-
ear regression model to distinguish different preferences on
different meta paths.

kv = ∑
P∈P gi × MP , v ∈ C, (9)

where MP is a meta path-based measure.
A meta path set P is carefully selected under specific

semantics and the length of each P ∈ P is limited (e.g., 5)
since a meta path will be invalid when it has a large length.
Sun et al. [26] presented the result that longer paths bring in
farther neighbours, which actually do not have much relation
with source nodes. Relatively short paths is good enough
for measurements, while long ones may lose particularity of
meta paths.

Different kv can be obtained when different meta path
measures (MP ) are chosen. gi indicates the i-th weight
associated with the i-th meta path. The goal in this phase
is to learn the weight vector g, which represents the impor-
tance of each meta path in determining whether two nodes

will have relationships in the future. Therefore, (1) is rewrit-
ten as follows.

min
g

F (g) = ||g||2 + λ
∑

〈u,v〉∈T
l(kv − ku). (10)

It is straightforward to derive (10) to obtain ∂F (g)
∂(g)

. Here we
also employ a gradient descent method to solve the optimal
problem. According to the learned g, we can calculate kv for
each v ∈ C in testing stage and obtain the ranking result.

3.5 Third phase: integrating results

With the trained weights, candidate nodes are scored and
ranked by pv and kv in SPR and MPR. We record the
ranking result as Rank1 and Rank2, respectively.

Rank1 has absorbed both the Global-info and the Attr-
info, and meanwhile Rank2 can represent the perspective
of the Local-info. Rank1 and Rank2 are obtained from
the same dataset and the same model (1) but represent
two different insights independently. Under this circum-
stance, it is intuitive for us to integrate these two ranking
results together. This situation is similar to Search Engine
which combines PageRank score and document correlation
score to give a good search result. The PageRank score
contains the structural information and the document cor-
relation score denotes the relevance between query and
document from the aspect of textual information. We denote
the integration procedure as:

SRank = �(Rank1, Rank2), (11)

where SRank is the final result of our framework. Tech-
nology about � involves a classical issue, namely Rank
Aggregation, which has been extensively studied [21]. In
this article we mainly focus on how to integrate three
kinds of information together. Therefore, we conduct exper-
iments to investigate two widely adopted implementations
of SRank, denoted as (12) and (13).

SRank(u) = Rank1(u)β × Rank2(u)1−β (12)

SRank(u) = Rank1(u) × β + Rank2(u) × (1 − β), (13)

where β ∈ (0, 1) is a parameter that controls the trade-off
betweenRank1 andRank2, which can be manually adjusted
according to the performance of experiments.

3.6 Complexity analysis

It is obvious that the main expensive part of S-Rank exists in
Algorithm 1. Thus, here we only focus on analyzing its com-
plexity. Algorithm 1 is time-consuming since it has 4 loops
from line 11 to line 22. In the most inner loop, each access to
the element of Q can be done in O(1), but it also requires to
access the neighbour nodes of one node. This operation can
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Table 4 Dataset of DBLP
Datasets #A #V #P #A − P #P → P #P − V

Training set 882 631 2832 3597 1003 2832

Group1 1008 717 3540 4576 1495 3540

Group2 1235 852 4212 5890 2382 4212

Group3 1461 938 5611 8046 3871 5611

Total subset 2505 3373 50910 68922 60749 50910

reach O(|V |) in the worst case. Therefore, the complexity
of Algorithm 1 is O(t ×|R|× |w|× |V |). Although S-Rank
has a relative high training complexity, it is fast in pre-
dicting phase. In practice, the training can be done off-line
using parallelization technologies to improve the training
performance.

4 Experiments

In this section, we conduct experiments to evaluate the
effectiveness of S-Rank framework comparing with the
state-of-art methods. We also make additional discussions
about the impact of training time and restart parameters.

4.1 Experiment description

A real-world DBLP bibliographic dataset is used to create a
HIN [29]. DBLP bibliographic dataset is a popular dataset to
build a heterogeneous information network for relationship
prediction. It records abundant publication data of papers,
such as the authors, published year, published venue, cita-
tions, etc. Because citation information is required, we refer
to the DBLP dataset provided by Aminer.org.2 This dataset
collects papers published from 1936 to 2010, which con-
tains 2,084 k papers and 2,244 k citation relationships in
total. Since the original network is too large, we generate
a subset of DBLP by sampling the authors that published
papers in the World Wide Web (WWW) from 2001 to 2008,
then extract the publication histories from 1991 to 2007 of
these authors. Previous works [13, 33] have shown that the
subset generated by this strategy is an effective sample.

All the baseline methods and S-rank are trained and
tested in following way. In the training stage, we set T0 =
[1991, 1998] and T1 = [1999, 2000]. This time interval for
training works the best for both performance and effi-
ciency. The impact of different training intervals is analyzed
in later sections. We select training nodes that have cita-
tion relationships with source node in T1, but never had in
T0. For S-rank, these nodes are further formed into train-
ing pairs 〈u, v〉. According to the definition of training set

2Available at https://aminer.org/dblp citation.

(Section 2.2), u is more cited by source node than v. The
parameters (W and g in this article) are learnt in training
stage. To verify the effectiveness of our framework, we
extract three groups (group1 to group3) of data for the test-
ing stage, in which T ′

1 is set to [2000, 2001], [2001, 2002]
and [2002,2003] respectively. Similar to training stage, we
select testing nodes that have citation relationship with
source node in T ′

1, but never had in T ′
0. Based on their fea-

tures extracted from T ′
0, these nodes are scored by the learnt

model. Then we compare the score with real network. The
higher score means more citation relationships with source
node in T ′

1. According to the network schema in Fig. 2, there
are 3 types of nodes and 3 types of edges in DBLP. The
number of different nodes and links in subsets is presented
in Table 4.

4.2 Experimental setup

Meta path selection This article focus on predicting the
Citation Relation (P = A − P → P) for three compelling
reasons: (1) citation prediction is one of the most typical
problem in DBLP and has been rarely studied in the litera-
ture; (2) citation prediction is challenging both from being a
long term prediction and its weak propagation property [34];
(3) the meta path P with dom(P) = range(P) has seldom
been chosen in previous studies. We select the meta path
according to two rules: (1) such meta pathP that dom(P) =
A and range(P) = P ; (2) as mentioned in Section 3.4, the
length of P is limited to 5. Table 5 summarizes the meta
paths P we selected in experiments.

Measures on meta path Intuitively, different meta paths
can capture different semantics in HINs. These rich seman-
tics make meta path a powerful topology in HINs, and
numerical measures can be developed on it to capture the
semantics. Once a meta path P is given, some of the meta
path-based measures (denoted as MP ) can be summarized
as follows.

– Path Count [25]. Path Count, denoted as PC, simply
counts the number of path instances following the given
pattern P between two objects.

– Random Walk score [25]. Random Walk, denoted as
RW , describes the ability one object has in visiting
another object along a given meta path.

https://aminer.org/dblp_citation.
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Table 5 Selected meta paths

Number Meta path Length

1 A − P 1

2 A − P → P → P 3

3 A − P − V − P 3

4 A − P − A − P 3

5 A − P − V − P → P 4

6 A − P − A − P → P 4

7 A − P − V − P − A − P 5

8 A − P − A − P − V − P 5

9 A − P − A − P − A − P 5

– Symmetric RandomWalk score [25]. Compared with
RW, symmetric random walk, denoted as SRW,3 con-
siders the action started from two endpoints of a meta
path.

We give an example in Fig. 5 to explain how these scores are
calculated. LetP = A−P −V −P −A represent the relation
between two authors, then PC(A,B) = 4, RW(A, B) =
PC(A,B)
PC(A,.)

= 2
5 and SRW(A, B) = 2

5 + 4
9 = 38

45 , where A and
B denote Alice and Bob, respectively.

The definition of meta path is based on the local paths
between two nodes (u, v) in HINs. It is easy for us to cal-
culate the numeric local structural features between u and
v according to the measures proposed above, and these
features are able to be used in MPR.

Baseline methods We compare our algorithm with two
baseline algorithms: Personalized PageRank (PPR) and
PathPredict (mentioned in Section 1). PPR, as an unsuper-
vised method, estimates reachability by considering both
the information passing along links between objects and
the probability the random walker jumps back to source
node s. PathPredict is a binary classification model to solve
relationship prediction. In our experiments, we adopt the
LIBLINEAR [6] to implement PathPredict. LIBLINEAR is
an open source library for large-scale linear classification,
which provides easy-to-use command-line tools and library
calls for developers.

Evaluation metrics Although S-Rank is a rank-based model
and Ma et al. [18] proposed novel evaluation measures, the
metrics are not adopted in this article since we do not use
ensemble pruning. The proposed method is evaluated by
two performance metrics: the Area under the ROC Curve
(AUC) [9] and the Precision at Top k (prec@k), i.e., how

3Remind that SRW here is distinct from SRW method mentioned in
Table 1.

Alice Bob

P1

P2

P3

P4

P5

P6

P7

KDD

ICML

ICDE

Fig. 5 An example of DBLP for score calculation

many of top k nodes suggested by our algorithm actually
receive relationships from s. AUC can be calculated by (14):

AUC = S0 − n0(n0 + 1)/2

n0n1
, (14)

where n0 and n1 are the numbers of positive and negative
examples. Particularly, in this article, positive examples are
the papers cited by source authors in T ′

1, while negative ones
are the papers that have never been cited. S0 = ∑

ri , where
ri is the rank of i-th positive example that ranked by score
reversely. It is appropriate to choose these two measures
since our dataset is class imbalanced and our experiments
aim at recommending the highly related papers to an author.

Feature extraction There are three kinds of edges in the
dataset: A− P, V − P and P → P . For each edge in the net-
work, we extract features according to its edge type. year is
extracted as a feature for each type of edge. We also calcu-
late the cosine similarity and jaccard similarity of the titles
of two cited papers for edge P → P. The author order is
taken as a feature for edge A−P . The extracted features for
each type of edge are presented as follows.

– V −P : 1
|yp−Y |+1 , where yp denotes the publication year

and Y denotes the starting year of dataset.
– A − P : 1

order
and 1

|yp−ya |+1 , where order denotes the
author order and ya represents the debut year of one
author.

– P→ P: cosine similarity and jaccard similarity between
titles; 1

|y1−y2|+1 where y1 and y2 denote the publication
year of the two papers.

Choice of function and parameters setting There are many
implementations for functions mentioned in Section 3.3.
We complete our experiments by choosing the following
functions according to the empirical performance.

– Exponential capacity for cuv:

πw(f ) = exp(f · w).

– Wilcoxon-Mann-Whitney (WMW) loss [32]:

h(x) = 1

1 + exp(−x/b)
.

To determine the function of SRank and the value of β,
we conduct experiments and the results are shown in Fig. 6.
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Fig. 6 Performance of SRank using different β on three groups of
data

mult and plus represent (12) and (13), respectively. By
analysing the results, we can learn that plus performs bet-
ter than mult, and different β indeed affects the results. To
achieve stable and overall better performance, we set β as a
random float near 0.6.

Other parameters for our algorithm are set as follows: (1)
λ is set to 1 since overfitting is not an issue in the experi-
ments; (2) restart parameter α is set to 0.1 for S-Rank (We
will discuss in Section 4.4.5). To ensure the fairness of the
experiments, restart parameter in PPR is set to the same
value; (3) step of gradient descent is initially set to 0.02
and decreases by a damping factor of 0.96; (4) convergence
condition ε is setted to 10−9.

4.3 Experimental results and analysis

The experimental results on three groups of data are shown
in Table 6, where the bold numbers indicate the best perfor-
mance. DifferentMP is utilized to implement PathPredict,
which are denoted as PP-PC,PP-RW,PP-SRW and PP-
Hybrid respectively. Note that Hybrid in PP-Hybrid is the
sum of the former three ones. To evaluate the performance,
we adopted three kinds of metrics (prec@10, prec@40 and
AUC). The results reported in Table 6 are the average of

multiple experiments which select different author nodes as
the source node.

First, S-Rank and PPR have the absolute advantage over
PathPredict on AUC. The reason is that PathPredict, as a
classification method, focuses on finding similarity or rel-
evancy between two authors, which may lose superiority
when dom(P) differs from range(P). This also indicates
that the ranking manner represented by PageRank works
better than the classification manner in citation prediction
tasks. Both PPR and S-Rank can achieve high AUC because
they both use PageRank strategy. However, S-Rank receives
even higher performance than PPR since it combine Attr-
info and Local-info (namelyMP ) together.

Next, S-Rank is also more effective from the perspec-
tive of prec@k. prec@10 is meaningful in the situation of
recommendation, which mainly concentrates on predicting
the front dozens of results. In general, although PP-Hybrid
outperforms PPR on prec@10, it performs slightly worse
on prec@40 and much worse on AUC. This means Path-
Predict has more positive examples in the top of results but
cannot find out enough positive examples from overall can-
didate nodes set. The reason is that PathPredict only makes
use of Local-info, and hence can only find out relatively
closer neighbours from the candidate nodes. On the other
hand, PPR only utilizes Global-info, which makes it good
at overall performance but cannot make prediction precisely
on top k. It can also be observed that S-Rank dominates
the results of prec@40 (improving at most 44.52% against
PPR and 74.64% against PathPredict) and is competitive on
prec@10 with PathPredict. Thus, there is reason to believe
that this improvement comes from the combination of three
kinds of information in HINs.

Experimental results indicate that the three kinds of
information have their own advantages over the relation-
ship prediction task. Therefore, it is essential to combine
them together. S-Rank can effectively complete the mission
and significantly outperform the baseline methods on three
metrics. Besides, traditional relationship prediction only
focuses on evaluating the similarity of the the same type
of node, such as predicting friendship between two people
in a social network or predicting co-author relationships in

Table 6 Performance
comparison between s-rank and
baseline methods

Methods group1 group2 group3

prec@10 prec@40 AUC prec@10 prec@40 AUC prec@10 prec@40 AUC

PPR 4.49 9.74 0.92 7.47 15.61 0.97 2.27 13.40 0.89

PP-PC 3.94 4.62 0.20 8.10 21.34 0.53 6.34 9.81 0.34

PP-RW 0.29 1.20 0.47 2.47 3.67 0.39 3.91 4.72 0.32

PP-SRW 0.83 1.14 0.13 3.80 4.96 0.22 4.36 6.27 0.34

PP-Hybrid 5.31 7.13 0.25 8.35 20.41 0.51 8.41 10.51 0.37

S-Rank 5.28 12.43 0.93 8.91 22.56 0.97 5.84 17.91 0.90
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heterogeneous bibliographic networks. In this article, the
proposed S-Rank framework studies the citation relation-
ship as an example of relationships between different types
of node. Therefore, S-Rank framework is suitable for more
various applications in social networks, such as predicting
which club will a person join in, which kind of movies will
he be interested in and what kind of activities will he attend.

4.4 Discussions

4.4.1 Impact of different meta path-based measures

In the third phase of S-Rank, we combine two ranking
results together (namely Rank1 and Rank2). Since Rank2
is related to MP , we compare implementations by using
three kinds of MP (mentioned in Section 4.2) as well as
their hybrid version. They are denoted as S-PC, S-RW, S-
SRW and S-Hybrid respectively. We conduct experiments to
investigate which implementation of Rank2 can achieve the
best performance when cooperating with Rank1. From the
results shown in Fig. 7, we can learn that there is little differ-
ence among the performances of S-PC, S-RW and S-Hybrid,
and they overall outperform S-SRW. In our experiments, we
chose S-RW to implement S-Rank. Through this study as
well as the experiments later, it is clear that different MP
has different expressiveness under different situations. This
issue remains to be explored for future work.

4.4.2 Weights of different meta paths

As we stated in Section 2.1, different meta paths can capture
different semantics in HINs. Intuitively, the weight associ-
ated with each meta path is also different. S-Rank can learn
the weights through MPR. From the results shown in Fig. 8,
we can observe that the weights for three kinds of measures

Fig. 7 Performace of S-Rank applying differentMP

are unified to some extent. They all assign higher value to
meta pathA−P,A−P −A−P andA−P −A−P −V −P

but lower value to A − P − V − P − A − P . Considering
the semantics associated with these meta paths, the results
are consistent with our knowledge in real life. A − P and
A − P − A − P represent an author citing papers that he or
his coauthors wrote before, and this phenomenon is of com-
mon occurrence in academic world; A−P −A−P −V −P

represents an author citing papers that have high relevance
with his research interests; while the paper reached through
A − P − V − P − A − P is too far from the source author
since the number of papers in one venue is too large and the
other authors have generally extensive research interests.

4.4.3 Accuracy for imbalanced data

Continuing discussing the poor performance of PathPre-
dict on AUC (Table 6), the essence to this phenomenon is
that the dataset for citation prediction is extremely class
imbalanced. In the experiments, the examples with positive
label (papers that the source authors will cite in the future)
only account for 1–2% of the training examples (all can-
didate papers). Thus, the traditional classifier works poorly
because it is more difficult to infer reliable patterns with
fewer examples of one class [19]. From the results shown in
Fig. 9, we can see that all the methods obtain a high accu-
racy (around 98%), but S-Rank achieves even higher recall
than PathPredict. This is because S-Rank utilizes training
pairs combining both positive examples and negative examples,
and hence S-Rank can effectively avoid imbalanced problem.

4.4.4 Impact of training intervals

Since the training costs of S-Rank framework grow rapidly
with the increasing of the length of time intervals, we
need to consider both performance and efficiency. The
training time interval that has a good trade-off between
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performance and length is required for this framework.
To obtain the suitable interval, we apply different training
time intervals in the training phase and test the perfor-
mance on future time intervals. Notice that we set T ′

1 much
longer than we did in Section 4.2, because in this section
we mainly focus on how the training time influences the
performance of prediction. Three test groups, denoted by
Group1′, Group2′ and Group3′, are generated for test-
ing in future time intervals of [2000, 2001], [2003, 2004]
and [2005, 2006], respectively. From the results shown in
Table 7, we can draw a conclusions that S-Rank performs
better with the growth of training time and becomes sta-
bled in training intervals [1992, 1998] and [1991, 1998].
In this article, [1991, 1998] is chosen as T0, because it
achieves slightly better average prec@10 and AUC than
[1992, 1998].

Figure 10 gives an understandable illustration how the
AUC changes in different training time intervals. The blue
bar denotes the best group that achieves the highest AUC,
and the gray bars denote the second best groups that
the AUC differences are less than 0.1 comparing to the
best group. When the training time is more than 7 years
([1992, 1998] and [1991, 1998]), we can learn that S-
Rank achieves more balanced performance on all the three
groups.

Fig. 10 AUC changes in different training time intervals. Horizontal
axis represents different training time intervals

4.4.5 Impact of restart parameter

The impact of restart parameter α in the training stage of
S-Rank is illustrated in Fig. 11, from which we can see that
S-Rank converges in 22 iterations and obtains overall fewer
iterations and minimum objective function value when α =
0.1. In spite of relatively fewer iterations, unfortunately, the
computational expense of each iteration is high (this sit-
uation only happens to SPR, while the iteration speed of
MPR is fairly fast). In our experiments, each iteration costs
nearly 20 minutes. Another limitation of S-Rank is that the
optimization for both phases are non-convergence, which
means that the convergency value is not a globally optimal
solution. Therefore, we resolve this problem by using dif-
ferent starting points to find an optimal solution (we run the
first and the second phase 30 times and 110 times, respec-
tively). Since the prediction of S-Rank is as fast as PPR
because it only needs to weight each edge in HINs, the test-
ing phase can be processed online after the off-line training

Table 7 Performance of
s-rank utilizing different
training intervals

T0 Group1′ Group2′ Group3′ Average

prec@10 AUC prec@10 AUC prec@10 AUC prec@10 AUC

[1997,1998] 5.50 0.5372 5.43 0.6122 6.67 0.7222 5.87 0.6239

[1995,1998] 6.24 0.7396 8.01 0.8347 7.50 0.8437 7.25 0.8060

[1993,1998] 8.00 0.9231 8.58 0.8641 7.93 0.7851 8.17 0.8574

[1992,1998] 9.21 0.9290 8.00 0.8958 9.00 0.9195 8.74 0.9148

[1991,1998] 9.50 0.9159 9.27 0.9378 9.15 0.9279 9.30 0.9272
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Fig. 11 Impact of the restart parameter α for iteration and the
objective function value

has been finished. Due to the excellent prediction speed and
performance, we can conclude that S-Rank is a valuable and
practical framework for relationship prediction over HINs.

5 Related work

Heterogeneous information network(HIN) is a novel net-
work type, which aims to integrate valuable semantic and
structural information into it. HINs have many advantages
than traditional homogeneous networks, since HINs are
more capable to represent real-word networks. Strategies on
HINs can be also applied to many areas.

HIN shows its capabilities in the area of text process-
ing. Shen et al. [22] propose a probabilistic model to solve
linking named entities in HINs. Wang et al. [31] study
the traditional text classification problem with HINs. They
represent the texts in a HIN manner and utilize a meta path-
based approach to link texts. They successfully develop
some HIN-kernels guiding the classifier to utilize the hidden
semantics in the heterogeneous representation of texts.

HIN is also powerful with regard to recommendation.
Yu et al. [35] aim to accomplish the personalized recom-
mendation by incorporating the implicit feedback, which
is denoted by different relationships in HINs. Shi et al.
[24] notice that previous studies about HINs did not uti-
lize the attributes existent in links. They propose a Weighted
Heterogeneous Information Networks upon the original def-
inition to conduct the personalized recommendation. This
part of their work is very similar to our work. However, the
attributes in our work are organized as an attribute vector,
which means the attribute in node can also be incorporated
into the vector and thus has different meanings in different
type of links.

The most traditional task in HINs is link prediction. Link
prediction in HINs has been extensively studied these years.

Since meta path has been proposed by Sun et al. [26], sev-
eral meta path-based approaches and their modified versions
are applied to link predictions. PathPredict [25] is a signifi-
cant model that utilizes meta path, which tries to model the
relationship prediction problem as a binary classification. It
proposes some measures as features based on meta path and
chooses the Logistic Regression as the classifier. Although
PathPredict effectively take advantage of local topological
features, namely Local-info, it ignores the rich Attr-info and
global topological features encoded in the networks.

Some approaches can capture Global-info. RW ALL
aims at tackling link prediction through modifying HIN
into a new network that given meta paths are represented
by direct links between start node and end node [13].
Then random walk is applied to capture the Global-info in
the modified network. By modifying an existing HIN into
another network, the important relations (meta paths) in
HINs can be highlighted. Thus, RW ALL is also capable of
capturing Local-info. However, the modification process is
extremely difficult since different HINs have different meta
structures, which limits the applicability of RW ALL.

Various approaches have verified that meta path is pow-
erful for mining structural information, but it is defective
for mining Attr-info. Therefore, other methods which can
capture Attr-info should be involved. Bucket [34] has stud-
ied the citation relationship prediction problem. It proposes
the Discriminative Term Bucketing (DTM) to capture doc-
ument and topic similarities that maintain possible citation
relations, and then combines the meta path-based features
to predict the citation probability. Bucket takes advantage
of both the Local-info and Attr-info, but it is not a universal
approach since the data structure of DTM is strongly limited
to the citation prediction problem.

Except for the above problem of meta path, the selection
of meta paths may be ambiguous. Cao et al. [4] state that
contemporary link prediction treats the schema of HINs too
simple, which is bipartite or star-schema. Naturally, meta
paths in these HINs are predefined. They proposed a novel
Link Prediction with automatic meta Paths method (LiPaP).
LiPaP designs an algorithm called Automatic Meta Path
Generate (AMPG), which is a greedy algorithm to select
meta paths according to their priorities. The automatic meta
path generation is novel, however, the pattern trained by
automatically selected meta paths is not specified, which
means that it may not be useful to predict some relationships
whose semantics are denoted by other meta paths.

Some approaches do not utilize meta path. Deng et al.
[5] proposed PAV (Paper, Author, Venue) model to rank
the objects in HINs, which assigns weights to the edges
and then applies a random walk model to rank the objects.
The weight is computed according to the latent attribute
information of each edge. PAV model is similar to the SPR
model of our proposed S-Rank framework. Both of them
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can capture Global-info and Attr-info, but SPR is a Page
Rank-based strategy. Similar to PAV, SRW (Supervised
Random Walk) [1] involves a supervised ranking method
for link prediction on social networks, which can effec-
tively combine the Global-info and Attr-info together. Gao
et al. proposed a semi-supervised learning method called
SSP (Semi-Supervised PageRank) [7] to learn Global-info
and Attr-info by applying a Markov random walk on the
graph. However, SRW and SSP are studied under the context
of homogeneous networks, and thus they cannot be directly
applied to HINs.

Cao et al. [3] study the collective prediction problem in
HINs. This work is strongly related to HINs since it raised
two meaningful problems: (1) the existence possibility of
links between two different types of objects should not be
measured by traditional proximity measures that are defined
on one single type of nodes; (2) different types of links
are not independent but related with complex dependencies
among them. To address these two problems, [3] proposes
a relatedness measure and an iterative framework inspired
by co-training. Another collective classification problem in
HINs can refer to [12], in which Kong et al. proposed a
novel method that can exploit a large number of different
types of dependencies among objects simultaneously.

Recently, Link prediction has been extended to other
researches. Baoxu Shi and Tim Weninger [23] introduce the
link prediction in HINs to a traditional problem, namely
Fact Checking. They propose a new model of the top dis-
criminative meta paths, which is able to understand the
meaning of some statement and accurately determine its
veracity. Ma and Dai [17] study time series prediction on
financial datasets and propose PS-ELMs (Pruned Stacking
Extreme Learning Machine) algorithm to tackle this issue.

A similar problem to link prediction, namely Inferring
Social Ties, is also studied on HINs. Tang et al. [28] study
the problem of inferring social ties over multiple heteroge-
neous networks. The idea of applying social psychological
theories to mine the similar patterns existed in different
networks is novel. Wenbin Tang el al. [30] aim to tackle
this problem in the situation of large scale network. More-
over, He et al. [10] extend the similarity measurement by
absorbing transitive similarity and temporal dynamics. Ma
et al. [16] developed a new prediction task in HINs, namely
Neighbor Distribution Prediction (NDP).

6 Conclusions and future work

In this article, we studied the relationship prediction prob-
lem in HINs. We first analyzed the impact of three cate-
gories of information, namely Local-info, Global-info and
Attr-info, behind the creation of relationships. Then, we
proposed a novel supervised three-phase framework, called

S-Rank, to utilize all the useful information and predict the
emergence of relationships in the future. To the best of our
knowledge, our work is the first to completely combine
Global-info, Local-info and Attr-info together. Experimen-
tal results indicate that the combination of three kinds
of information can significantly improve the performance
compared to with the baseline methods.

For future work, we are interested in two main aspects.
Firstly, we aim to figure out a solution with good con-
vergence property. Secondly, the potential advantages of
combining three kinds of information remain to be explored
by other technologies. For example, more complex Rank
Aggregation methods and co-training [2] techniques can be
used in our framework.
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